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Abstract

This paper presents a new approach for indepen-
dent component analysis (ICA) of functional mag-
netic resonance imaging (fMRI) data, extending its
applicability to simultaneous analysis of data from a
group of subjects. This approach results in a set of
timecourses common to all the subjects, combined
with corresponding individual images for all sub-
jects. This is in contrast to conventional treatment
of group data, which normally involves per-voxel
averaging of co-registered images over the group.
Compared to conventional methods, the proposed
methods maintains the effective spatial resolution of
the fMRI data. The proposed method is illustrated
using a real fMRI data set containing five subjects.

1 Introduction

Independent component analysis (ICA) is a sig-
nal processing technique for separating linear mix-
tures of source signals, which are assumed to be
statistically independent. It has been subject to
great interest within the neural information pro-
cessing research community and analogies has been
made between the sparse representations found by
ICA and those formed in the brain.

McKeown et al. [8] proposed using ICA as a
method for analysing functional brain imaging data
of individual subjects, obtained using functional
magnetic resonance imaging (fMRI). They sug-
gested that ICA would separate out not only signals
originating from the stimulation, which subjects re-
ceive during fMRI experiments, but also signals
from other sources, such as slow varying sources
and subject movements.

In this article, we consider extending this ap-
proach for simultaneously analysing fMRI data
from a group of subjects. This yields a set of tem-
poral patterns (‘timecourses’) common across the
group, and for each timecourse, a separate image
for each of the subjects. It is common practice to re-
peat a fMRI experiments across groups of subjects,
but the subsequent analysis normally computes a
per-voxel average over the group, which will reduce
the effective spatial resolution and hide any indi-
vidual differences.
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In the following section we provide a very brief
description of fMRI. This is followed by a section
on ICA, its application to fMRI data, and how this
can extended to deal with group data. In section
4, we give an example of our new approach applied
to data from a real fMRI experiment including five
subjects and the paper ends with a discussion.

2 Functional MRI

FMRI attempts to detect brain activity by lo-
calised, non-invasive measurements of the change
in blood oxygenation, the so called BOLD contrast
[9]. This is sensitive to the relative local concentra-
tions of oxygenated hemoglobin (HbO3) vs. deoxy-
hemoglobin and provides an indirect measure of the
brain’s neuronal activity. Measurements, in the
form of a time-series of images, are collected un-
der controlled conditions, where subjects are per-
forming specific tasks, prompted by some stimulus
(e.g. deciding whether a read out sentence is gram-
matically correct or not, perform arithmetic calcu-
lations, etc.).

The fMRI data are usually analysed by comput-
ing some sort of statistic, based on the correlation
between the observed signals—the timeseries col-
lected at each voxel—and a function representing
the performance of the task after adjustment for
hemodynamic effects (see e.g. [10]).

Most fMRI experiments are carried out with a
group of subjects, all performing the same task se-
quence. In some cases, this is because the aim is to
demonstrate a general effect on a population, rather
than the effect on individuals. This is achieved by
analysing the distribution of voxel-wise computed
statistics over the group. In other cases, the sig-
nal from the stimulus induced activity is so low
in comparison to signals from other sources, that
the collected data needs to be averaged across sub-
jects, in order for the signal to be detectable. In
either case, the result is a statistical summary for
the whole group, which does not describe individ-
ual differences and whose effective spatial resolu-
tion is significantly reduced compared to that of the
the individual fMRI images, due to the high inter-



subject anatomical variance. At the moment, only
few methods are available that simultaneously cap-
ture commonalities across a group and differences
between individual subjects.

3 Independent component analysis

ICA [1, 2, 6] can be regarded as a generalisation
of the more well-known principal components anal-
ysis [4]. Just like PCA, ICA linearly ‘separates’ a
N-dimensional data set into N components. How-
ever, whereas PCA yields components which are
uncorrelated, ICA tries to find components which
are independent. These two conditions are identi-
cal when the components have Gaussian distribu-
tions, as is assumed by PCA [12], but ICA assumes
that this is not the case. Given that the observed
data was generated by linearly mixing independent
sources with non-Gaussian distributions, ICA will
separate the mixture into the original sources. It
achieves this by computing a linear transform that
‘unmixes’ the mixed sources; if we think of the mix-
ing transform as a matrix, ICA computes its in-
verse.

To make this more concrete, let  denote the N-
dimensional random variable corresponding to the
observed signals, and s the N-dimensional random
variable corresponding to the underlying sources.
We can then write

x = As, (1)

where A is a N x N full rank unknown mizing ma-
triz. Note that we assume that the observed vari-
ables are observed without noise, but ‘noise’ may
still be represented in the data through one or more
of the sources.

Most ICA estimation procedures take their start-
ing point in the assumed independence between the
original sources, which simply means that the prob-
ability distribution function of the random vector
s can be written as the product of marginal distri-
butions of the vector elements

p(s) =[] p(sn)- (2)

Based on this assumption the aim is to find an un-
mizing matriz, W, such that the recovered sources

y=Wzx=WAs, (3)

are maximally independent. Several measures for
independence have been proposed in the ICA lit-
erature and they can all be related to each other
[2]. Here we restrict our attention to the mutual
information, defined as

I(y) =) _ H(ya) — H(y). (4)

where

H(y) = - / p(y) Inp(y) dy, (5)

is the differential entropy for the random vector
y with a probability distribution p(y). We see
directly from (2), (4) and (5) that the mutual
information is zero when the recovered sources,
Y1,Y2,- - - ,YM, are independent and it can be shown
to be strictly positive otherwise.

Assuming that W in (3) is of full rank, (4) can
be written

I(ylay21"' 1yM) -

" H(yn) — H(x) - In(abs(det(W))). (6)

If we consider minimising this expression with re-
spect to W, restricting its row vectors to be unit
length, we note that the last term on the right
hand side will be minimised when W is orthog-
onal, while the first term is minimised when the
marginal distributions p(y,,) are as ‘non-Gaussian’
as possible!. However, these marginal distributions
are unknown—a complication which also affect all
related measures of independence.

Several approximate schemes have been pro-
posed, most of them primarily aimed at obtaining
an estimate of the gradient of the objective function
(e.g. (6) above) with respect to its parameters (W
in (6)); these estimates are computed by averaging
over a data set of samples from observed signals.
Once the gradient has been obtained, the optimi-
sation can be carried out using stochastic gradient
or Newton methods.

3.1 ICA of fMRI Data

Applied to fMRI data, ICA tries to separate the
sequence of recorded MR images into a set of in-
dependent source images. That means that each
recorded image is treated as an observed variable,
with the voxels in the image being regarded as sam-
pled from that variable. McKeown et al. [8] moti-
vate this with the argument that the spatial local-
isation of brain areas activated by performing the
task in an fMRI experiment should be independent
of the localisation of signals arising from sources
such as head movement or system noise.

Thus, the mixing matrix (A in eq. (1)) will con-
tain corresponding set of timecourses, specifying
how the source images have been mixed to form
the observed set of images. For example, we expect
that the image(s) that represent the cognitive task
has a timecourse that somehow reflects this. We
obtain the mixing matrix directly as the inverse of
the unmixing matrix found by ICA.

IFor a random variable with given mean and (co)vari-
ances, the Gaussian distribution is the distribution that maz-
imises the differential entropy.



3.2 ICA of fMRI Group Data
The idea of using ICA to analyse fMRI group
data is based on the following observations:

e All subjects in an fMRI experiment are car-
rying out the same task sequence. Thus, the
individual source images corresponding to the
performance of the task ought to have similar
timecourses.

e The union of two samples from N independent
sources simply gives a larger sample where the
N sources are still independent. This holds
even when the two samples contains different
sources.

These lead us to propose the following model (using
the notation of eq. (1)):

[z1,2Z2,...,2K] = Als1, S2,... ,SK]- (7
Here, oy, represent the data collected for subject k,
in the form of a N X Lj matrix; N is the number
of images collected for each subject during the ex-
periment and Ly is the number of voxels inside the
brain mask for subject k. Accordingly, sy represent
the matrix of independent source images of subject
k. The [-,-] operator denotes row-wise concatena-
tion of matrices. A, finally, denotes the mixing
matrix, which is common to all subjects.

This means that we are extracting spatial com-
ponents with common timecourses across all sub-
jects. Compared to the approach of McKeown et
al., we are also trying to obtain independent im-
ages, but the images now contain the voxels of all
subjects. This approach does not require any co-
registration of the images from different subject,
since the spatial locations of the voxels are irrele-
vant to ICA. Thus, the resulting independent im-
ages has the same resolution as the original fMRI
data.

Note that the ordering of the sources for an in-
dividual subject is arbitrary to ICA, and is de-
termined only by the ordering of the columns in
the common mixing matrix. Thus, we can read-
ily assume that the task related source image(s)
has the same ‘index’ (row index in the sy matrices)
across all subjects. Note also that, there is nothing
preventing physical sources, such the task induced
activation, to manifest themselves more than one
source image, so this model can still cater for indi-
vidual behaviour of such physical sources.

4 Example

We demonstrate our proposed method using
fMRI data from an experiment with a ON/OFF
block trial design and a visual alternating checker-
board stimulus [5]. The experiment was performed
with five different subjects, from each of which data
was collected from three slices. In addition to the

functional data, a high resolution anatomical im-
ages was obtained for each slice of each individual.

We restrict our attention to a selected set of 228
functional images containing the first 9 blocks. We
arrange the selected images from each subject as
described in equation (7) and the resulting data
matrix is passed to an ICA algorithm. For the ex-
amples presented here we have used the extended
infomax algorithm [7], but have also obtained simi-
lar results with the FastICA algorithm [3]. By com-
puting the correlation between the timecourses in
the resulting mixing matrix and a function repre-
senting the performance of the task after hemody-
namic correction, task related components can be
identified [8]. The resulting spectrum of correlation
scores dropped approximately exponentially, with
the five top scores being 0.91, 0.57, 0.27, 0.26 and
0.20.

Component A in figure 12 shows the independent
image (rotated 90° anti-clockwise) with the highest
correlation with the task overlaid on the anatom-
ical images of the five subjects. The correspond-
ing timecourse is shown, together with the function
representing the task, in the upper plot in figure 2.
The top image in figure 1 are in good agreement
with the Z-maps obtained by conventional analysis
of this data set [5]. The highlit regions, situated in
the visual cortex (V1), correspond to the region of
the visual field which is activated during the ON-
phase.

Component B in figure 1 shows another indepen-
dent image whose timecourse, shown in the bottom
plot in figure 2, is weakly anti-correlated (—0.17)
with the stimulus. The highlit regions in this im-
age correspond to the peripheral parts of the visual
field. This component might reflect an attentional
mechanism forcing the focus to the central visual
field during the ON phase [11].

5 Discussion

This paper has introduced a new approach for
ICA of fMRI data, extending its applicability to
groups of subjects.This allows for detection of com-
mon temporal patterns, with individual spatial dis-
tributions in each of the subjects. This is achieved
by restricting ICA to find a single unmixing matrix
common to all subjects. Compared to conventional
treatment of group data, our approach avoids direct
averaging across subjects and thus produces images
whose effective spatial resolution equals that of the
original fMRI data. ICA as such does not require
any a-priori specified timecourse, but identification
of task related components will be easier if such a
timecourse is available.

Our approach also has potential for discovering
other sources which may show common temporal

2A colour version of this figure is presented in the elec-
tronic version of the proceedings.



Component B

Compbnent A

Figure 1: Two independent images (A and B) overlaid on the anatomical images of the five subjects. The
images have been rotated 90° anti-clockwise. The corresponding timecourses are plotted in figure 2. The
images have been normalised to zero mean and unit variance, and thresholded at +1.65. The blue-cyan
voxels represent negative correlation, red-yellow voxels positive ditto and the brightness corresponds to
the absolute value.
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Figure 2: Timecourses (solid red) of the images
shown in figure 1, plotted together with a time-
shifted ‘box-car’ function (dashed blue) represent-
ing the performance of the task after hemodynamic
correction. All timecourses have been normalised
to zero mean and unit variance prior to plotting.

patters, such as attentional mechanisms, habitua-
tion or baseline drift in the fMR image acquisition
system.

It lies in the nature of our approach that, it may
suppress weak sources with different temporal char-
acteristics across subjects. However, our model will
still cater for strong sources represented in just one
or a few subjects. For such sources, all voxels in im-
ages from subjects where the source is not present
will have low values.

From a computational point of view, working
with data from a group of subjects, will obviously
require more computation than if we are working
with data from a single subject from that group.
However, the computational effort does not have to
grow linearly. Our approach effectively means that
we are increasing the number of samples from the
observed variables, and hence the computation may
converge with fewer iterations through the (larger)
data set.

ICA of fMRI data is still a fairly new idea and
many open questions still remain. As mentioned in
section 4, several components with a stimulus re-
lated timecourse where found in our example anal-
ysis. This highlights the question on how to de-
termine the contributions of individual components
to the overall signal. Another problem, which is a
difficult for the general case, is the identification
of components that can aid our understanding of
the generating processes of fMRI data, from the
large set of components resulting from ICA. For the
particular processes triggered by the stimulus, we
can rely on correlation methods from conventional
fMRI analysis. In the case of group data analy-
sis, this clearly yields results in a new form, with
a common timecourse extracted from the data and
corresponding individual images for all subjects in
the group.
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