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Probabilistic Modeling of Single-Trial fMRI Data
Markus Svensén*, Frithjof Kruggel, and D. Yves von Cramon

Abstract—This paper describes a probabilistic framework for
modeling single-trial functional magnetic resonance (fMR) images
based on a parametric model for the hemodynamic response and
Markov random field (MRF) image models. The model is fitted
to image data by maximizing a lower bound on the log likelihood.
The result is an approximate maximuma posterioriestimate of the
joint distribution over the model parameters and pixel labels. Ex-
amples show how this technique can used to segment two-dimen-
sional (2-D) fMR images, or parts thereof, into regions with dif-
ferent characteristics of their hemodynamic response.

Index Terms—Hemodynamic response, image segmentation,
Markov random field, mean field theory.

I. INTRODUCTION

FUNCTIONAL magnetic resonance imaging (fMRI)
attempts to detect brain activity by localized, noninva-

sive measurements of the change in blood oxygenation, the
so-called BOLD contrast [1]. Measurements are collected under
controlled conditions where subjects are performing specific
tasks prompted by some stimulus (e.g., deciding whether a read
out sentence is grammatically correct, performing arithmetic
calculations, looking at changing scenes, etc.).

There are two dominating design paradigms for fMRI experi-
ments. In block trial design, subjects repeat the task for extended
periods of time (blocks of, say, 30 s), interleaved with similarly
long periods of inactivity. In contrast, in single-trial design (also
called event-related design [2]) the task is performed only once,
followed by a period of inactivity before the next trial. This al-
lows the full response evoked by the task to be analyzed and it
is this kind of analysis we are interested in this paper.

The analysis of block trial fMRI data has been focused on
identifying regions in the brain where the collected measure-
ments show correlation with the task performed, so called ac-
tivated regions. For single-trial data, we are interested not only
in which regions are activated, but also what kind of activity
occurs. Both these problems depend on the characterization of
the hemodynamic response (HR) [3], which refers to the local
change in blood oxygenation as an effect of increased neuronal
activity. This change is not immediate but is delayed by 2–6 s
from stimulus onset and this delay varies among subjects, ex-
perimental conditions, etc. Moreover, the stimulus subjects are
exposed to during data collection, which is assumed to trigger
the task-related activity, is normally treated as being discrete.
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Often it is modeled as a binary (box-car) function, i.e., the stim-
ulus is either present or not present. In contrast, the task-related
blood oxygenation rises and decays smoothly.

Successful detection of activated regions requires that the
HR is taken into account when analyzing the correlation be-
tween collected measurements and the stimulus. The simplest
approach is to shift the boxcar-function representing the stimuli
in time to account for the delay in the HR [4]. A more sophisti-
cated approach is to convolve a function representing the stimuli
with a model function for the HR. A number of functions have
been proposed for this purpose: Fristonet al. [5] used a global
Poisson-function whose parameter was estimated from the data.
Lange and Zeger [6] instead proposed to use the Gamma func-
tion and Rajapakseet al. [7] the Gaussian function. In both of
the latter cases the model function parameters were estimated
separately for each pixel averaged over data from many trials
in the Fourier domain. Fristonet al. [8] proposed modeling the
HR using a linear combination of fixed global basis functions
chosen to span a space of probable HR model functions. A sim-
ilar model was proposed by Bullmoreet al. [9]. In both these
models, the weight parameters of the linear combination is de-
termined, per pixel, from the data by averaging over trials.

Improving detection of activated pixels has, until recently,
been the primary driving force behind the research in modeling
the HR. Only with the introduction of single-trial fMRI exper-
iments, the characterization of the HR has become a research
interest in its own right. This strand of research has so far con-
centrated onpost hocanalysis to the HR in regions found to be
highly activated, called regions of interest (ROI’s). It is done
either by fitting a HR model function to or averaging the time
course over a selected set of pixels and/or over trials with iden-
tical stimuli [3], [10], [11]. However, it is not obvious how to
choose these (sets of) pixels from an ROI. Moreover, the detec-
tion of ROI’s relies on an initial estimate of the HR, which will
obviously affect which regions become ROI’s.

In this paper a multivariate probabilistic framework for mod-
eling fMRI data is investigated. It aims to construct a genera-
tive model of the process that generated the observed image, by
combining a parametric model for the HR with the use of image
models based on Markov random fields (MRF’s). It is intended
to be complementary to existing methods for analysis of fMRI
data, offering the following.

• Mechanisms for modeling multiple regions with different
HR characteristics. For example, the response typically
occurs later in venous areas than in cortical areas.

• A way to incorporate prior expectations into the modeling.
• Simultaneous image segmentation and parameter estima-

tion.
• A framework which can be extended to model more com-

plex structure in the data, e.g., clusters of single trials with
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similar spatio-temporal characteristics, in a series of re-
peated trials.

Applying this model to fMRI data results in an image segmented
into regions, where pixels within a region have similar charac-
teristics in their HR, which are distinct to those of pixels in ad-
jacent regions.

The model presented in this paper is restricted to single-trial
data where the time between subsequent trials is sufficiently
long to allow the HR to return to baseline. Moreover it assumes
some basic preprocessing of the data, as will be described.

II. M ODELS AND METHODS

We propose to model an fMR image, by which we mean a set
of pixels on a regular lattice with associated time-series of mea-
surements, as an MRF. Each pixel is assumed to belong to one
out of classes, with each class corresponding to a parametric
model function for the HR. The time series associated with each
pixel contains measurements collected at the corresponding lo-
cation during a single trial at times . Each trial con-
sists of one repetition of the task, followed by a period of rest
during which the subject is assumed to be inactive. By choosing
an MRF model, we implicitly assume that the spatial distribu-
tion of the classes will be locally smooth so that neighboring
pixels typically belong to the same class. This may seem counter
to the rather complex spatial structure of the brain, but the lim-
ited spatial resolution of fMRI as well as partial volume effects
will have the effect of smoothing the spatial distribution. Thus,
images will consist of one or more spatially homogeneous re-
gions, each region associated with a parametric HR model func-
tion.

The MRF model and associated inference procedures that we
are going to describe are independent of the dimensionality of
the images, but in the given context, only two-dimensional (2-D)
or three-dimensional (3-D) images are of interest. We will re-
strict our attention to 2-D images, as the resolution of our cur-
rent fMR images is much lower in the between-plane direction
than the in-plane direction.

A. Modeling the Hemodynamic Response

The theoretical framework is independent of the choice of HR
model function but for efficient model fitting we should choose
a function which is continuously differentiable with respect to
its parameters. We follow Kruggel and von Cramon [10] and
model it using a Gaussian function. There are two principal rea-
sons behind this choice. First, it provides a parsimonious model
which agrees well with observed data. Second, the parameters
of the model can be given a physiological interpretation.

To formalize, we model the HR as a function of time as

(1)

where, as illustrated in Fig. 1:
lag, i.e., the time from the onset of the stimuli to the
peak of the HR;
dispersion, which reflects the rise and decay time;
gain, or amplitude, of the response;

Fig. 1. An illustration of the Gaussian HR model function showing parameters
�; �; �; ando. The dotted horizontal line labeled 0 represents the (arbitrary)
baseline level.

offset that defines the minimum level for the HR model
function, relative to some baseline level.

The function can be fitted to a set of data by minimizing,
e.g., the least-squares fit with respect to the parameters, using
standard methods for nonlinear optimization (see, e.g., [12]).
Note that, in comparison to the model proposed by Rajapakseet
al. [7], this model does not involve a convolution with a function
representing the stimulus. This is equivalent to representing the
stimulus as an impulse at the beginning of each trial, which will
be a reasonable approximation as long as the stimulus is short
relative to the temporal resolution of the experiment, i.e., the rate
at which fMR images are collected. We also assume that the time
between two trials, the intertrial interval, is sufficiently long for
the HR to return to the offset level. Both these restrictions could
potentially be relaxed, given that certain assumptions about the
stimulus and the HR are made.

For numerical convenience,and can be expressed using
auxiliary variables and so that

and (2)

This will ensure that and are always positive. For, this is
certainly a sensible and numerically necessary restriction, while
for it must be regarded as a simplification. It is known that
there are regions in the brain that exhibit a deactivation in re-
sponse to stimulus. However, since the underlying mechanisms
are not well understood we prefer to restrict ourselves to pos-
itive responses only. This constraint can be relaxed simply by
modeling as direct parameter. We will useto denote the pa-
rameter vector .

It is well known that fMRI data is subject to noise from a
number of sources, e.g., physiological processes such as pulse
and breathing, baseline drift, etc. [29]. However, we will as-
sume that preprocessing the data will remove systematic noise
components, so that we can treat remaining noise as being ap-
proximately spherical Gaussian with variance and uniform
over the whole region, i.e., the noise level is the same for all
subregions. Empirical results suggest that these are reasonable
approximations, although choosing small will typically re-
sult in some residual correlations in the noise. This highlights
an important consequence of having a spatially varying versus
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spatially constant model. In the latter case, spatial variance in
the signal will be regarded as noise, with a resulting spatial co-
variance [10]. Although a spatially constant noise model almost
certainly is an approximation, combined with a spatially varying
model for the signal and preprocessed data it can be regarded as
sufficient.

For a pixel which belongs to class the probability distri-
bution over observable trial vectors can then be written as

(3)

where is the HR model function computed from (1)
and (2) for using the parameter vector

. We assume that pixels are indepen-
dent given their class labels, so the likelihood for an image or,
more generally, a region of pixels can be written

(4)

where is an indicator function that equals one if pixel
belongs to class and zero otherwise. We can then select the
parameter values for the HR functions that maximize (4).
However, we do not know , and in order to deal with this
problem in the given context we will need some more theory,
but before coming to that, we consider prior expectations about
HR functions.

1) Additional HR Priors: Our choice of model function
for the HR forms in itself a fairly strong prior about what
we expect to find in the data. Nevertheless, the experimental
design normally provides additional knowledge, in the light of
which certain values for the parameters of the HR functions
seem much more likely than others. We can incorporate this
into our model by defining a prior distribution over the space of
parameter values. The fact that our chosen HR model function
has interpretable parameters facilitates this specification.

Here, we choose a simple independent Gaussian distribution

(5)

where is a -element vector contain the expected values
for , , and , , and is a diagonal
covariance matrix with the corresponding variances along its
diagonal. From (2) we see directly that an expected value for the
dispersion corresponds to an expected value for .
The expected variance of can be translated into a expected
variance of using the linear approximation

Var Var Var

Prior expectations about can be translated into expectations
for in the same way.

We will refer to and as hyperparameters, since they
control the distribution over the parameter. We assume that

the prior and likelihood are independent, so we can multiply
them together to obtain a penalized likelihood. The prior will
appear as an additional term in the update formula for the pa-
rameters of the HR functions which penalizes parameter values
that depart significantly from thea priori specified . will
control the scaling of this penalty so that when the element along
its diagonal are small, the corresponding penalty will be large
and vice versa. We can think of as expressing our confi-
dence in our estimate .

B. Modeling Images Using MRF’s

An MRF [14] is a set of random variables indexed over the
vertices in an ordered lattice. The typical example is a 2-D image
where the random variables are the labels (e.g., color) associated
with the pixels. The key property of MRF’s is that the distribu-
tion of the random variable associated with a pixelgiven the
values associated with the pixels in a (typically small) neighbor-
hood of is independent of the rest of the pixels in the image.
This can be formalized as

(6)

where
class label of pixel ;
set of random variables representing the labels for the
pixels that are in the neighborhood of pixel.

In this paper, we will restrict ourselves to discrete distributions
over 2-D regular lattices.

The distribution over an MRF can be written as a Gibbs dis-
tribution

(7)

where
vector of class labels for all the pixels in the image;
potential functionfor clique in the lattice of pixels;
normalization constant.

A clique is an ordered set of pixels which are all in the neigh-
borhoods of each other. The sum in (7) runs over all the cliques
in the lattice, as defined by our choice of neighborhoods. The
potential function gives a potential, or cost, for the particular
combination of labels in the cliques, given by the corresponding
elements in . The normalization constant,, also known as the
partition function, ensures that the distribution integrates to one
and is computed as

(8)

Computing exactly is tractable only for very small images,
since it requires summing over the whole set of possible pixel-
class combinations, . Fortunately, as will be seen, computing

is not necessary for the purpose of model fitting.
We use the commonly applied multilevel logistic model [15],

[16], where we specify neighborhoods such that each pixel only
depends on its nearest neighbors (distance equal to one in the
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lattice of pixels). Thus, our model contains cliques with two
pixels, for which we define the potential function

if
otherwise.

(9)

Here we have dropped the indexsince is the same for all
cliques that we are considering.plays the role of a scale pa-
rameter for the prior. As increases, so does the cost for neigh-
boring pixels from different classes, which in effect forces a
smoother image.

C. Parameter Estimation and Segmentation

We are seeking to jointly estimate the parameters of the
HR model functions, , the noise parameter

, and a corresponding segmentation of an fMR image (or a part
thereof) into regions. We do this by maximizing the likelihood of
the image under the constraints imposed by the MRF prior and
the prior distribution over the parameters of the HR functions.
The hyperparameters and , and the MRF scale parameter

are considered to be defineda priori and are kept fixed.
To formalize, we want to maximize the penalized likelihood

function

(10)

with respect to and . Here we have used (6) combined with
the fact that depends on , , only through and
that the prior distribution over the pixel class labels is indepen-
dent of and . Once we have found the parameter values that
maximize (10), we can use these in conjunction with the data to
determine the most likely segmentation of the image, as will be
described shortly.

Normally, it is more convenient to take the logarithm of (10),
to get the penalized log-likelihood function

(11)

The last term in this expression is independent ofandα and
maximization of with respect to is straightforward
for the prior chosen in (5). However, in the remaining middle
term, denoted, which represents the conditional log-likelihood
of the data, the class labels are unknown. The correct way to
deal with such unknown random variables is to integrate (sum)
them out of the expression of interest, in our case yielding [from
(3)]

(12)

where denotes expectation and

(13)

i.e., the posterior probability that theth pixel belongs to class
, given the data observed at the pixel and the classes of neigh-

boring pixels. Comparing with (4), plays the role of a soft
indicator function, replacing the hard ( ) indicator func-
tion . Equation (12) can be recognized as the expected com-
plete log-likelihood of the expectation-maximization algorithm
(EM) [17] where are the so-called responsibilities.

In order to compute (12), we first need to compute the
marginal posterior distributions and
using Bayes’ theorem we get

(14)

However, due to the mutual coupling between the MRF vari-
ables, computing would require integrating over all
the remaining unknown MRF variables: an intractable
computational task. However, there exist approximate methods
to tackle this problem.

1) The Mean Field Theory:The mean field theory has a long
history in statistical physics and statistical mechanics, and has
more recently become popular as a method for approximating
intractable probability distributions in the fields of MRF image
modeling and statistical machine learning (several references
are given in [18]). The basic idea is that influence on a pixel

from a neighboring pixel can be approximated by a mean
influence, computed over the distribution for. In practice, this
approximation has been shown to give good results at moderate
computational costs. It can be given a formal justification by
appealing to variational approximation methods [18].

The problem we are facing is to compute the marginal distri-
bution which, using (6), (7), and (9), can be written
as

(15)

where
the factor 2 accounts the dual cliques;

local partition function.
If we for a moment assume that we know
for all , we can integrate those variables out of (15),
yielding

(16)

where we have again used the notation introduced in (13).
Now, we do not know , but (14) and (16)
together suggest an iterative scheme. Starting from an initial
guess for , we can compute
from (16), which then can be used in (14) to give a new
estimate for . Alternating between these
two steps, each step computing the respective distribution over



SVENSÉNet al.: PROBABILISTIC MODELING OF SINGLE-TRIAL fMRI DATA 29

all MRF variables, will result in an approximate distribution
, which can be substituted into (12) to give

(17)

This can be seen as a lower bound of the expected com-
plete log likelihood. Alternating between computing

and maximizing (17) with respect
to and , we obtain a variational variant of the EM algo-
rithm, which maximizes this lower bound, rather than the log
likelihood itself [19], [20]. Note that and are kept fixed
when computing , which in turn is kept
fixed as and are updated.

2) Mean Field Annealing:A potential problem with the
method discussed so far, which plagues most forms of nonlinear
optimization problems, is that of local maxima. When the data
are noisy, only slightly different initial values for the param-
eters can result in very different maxima after optimization
and deciding whether a found maxima is a good one may be
difficult.

This is the motivation for the use of annealing techniques in
nonlinear optimization problems [21]. The aim is to make it
less likely that the maximization gets stuck early in poor local
maxima. The way to achieve this is to initially smooth the func-
tion that we are optimizingand then gradually, as the optimiza-
tion proceeds, remove the smoothing. It has been used success-
fully with MRF models for restoration of images [16], in par-
ticular, fMR images [22] and, in combination with mean field
theory, anatomical magnetic resonance images [23].

In our case, the smoothing is imposed by introducing a tem-
perature parameter for the marginal posterior distribu-
tions in (14), via (3) and (16), yielding

(18)

is initially set to a large value and is then gradually decreased
during optimization, until its value reaches one. Note that we
keep fixed at an initial value as long as , so the annealing
should be followed by further optimization, where and
both and are being optimized to converge to their final
values.

3) Putting the Pieces Together:We now summarize the
complete sequence of steps required for parameter estimation
and segmentation, as shown in Algorithm 1. This algorithm
maximizes a lower bound of the penalized log likelihood (11)
and will converge to a set of parameters, and , which can
be regarded as an approximate maximuma posterioriestimate
of the distribution over HR parameters. Given these parameters,
we can use the mean field theory to compute an approximate,
conditional distribution over class labels for all the pixels in the
image.

The maximization with respect to and proceeds in two
substeps. First, we maximize with respect to, by solving

(19)

for using numerical optimization. Second, by
differentiating (17) with respect to , using (3) we obtain an
update formula in closed form as

(20)

where are computed using the updated parameters.
The mean field computation and the overall fitting procedure,

are iterated until the penalized log likelihood (11) no longer
changes significantly. From empirical experience, ten iterations
seem to be sufficient for the mean field computation. Failure to
reach absolute convergence simply means that the bound on the
likelihood will be less tight. For the full fitting procedure, we
have so far found 40 iterations (or less) to be sufficient.

Once the fitting procedure has converged, we can use the
mean-field theory to compute the approximate distribution

. This distribution can be interpreted
as a soft segmentation of the image, which also expresses the
uncertainty in the classification of the pixels. If desired, an
absolute segmentation can be obtained simply by choosing the
most likely class for each pixel.

Algorithm 1 Estimation of HR parameters
and image segmentation

Given: A data set , ; values
for and ; initial values for
and .
Compute for all and

, using (3).
Initialize using

, i.e., ignoring the influences
from neighboring pixels.

repeat
repeat

for do
Update using (18).

end for
until convergence
Update using (19).
if then

Update using (20).
else

Decrease suitably.
end if
Recompute for all

and , using (3).
until convergence
repeat

for do



30 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 19, NO. 1, JANUARY 2000

Compute using (18).
end for

until convergence
As an optional step, segment the image:

III. EXAMPLES

In this section we look at three examples illustrating the pro-
posed method. The first example uses realistic synthetic data
consisting of artificial HR signals modulated on noise signals
from a real fMRI experiment. The second example uses real
data from an fMRI experiment with a sentence comprehension
task, and demonstrates how the proposed model can be used
to segment whole images, relating this to results from conven-
tional fMRI analysis techniques. Using the same data set, we
then focus on a region in the images and demonstrate how it can
be divided into subregions with different HR characteristics. Fi-
nally, we apply the model to data from another fMRI experiment
with a task switching paradigm, comparing sets of trials with
different stimulus conditions. Before coming to the actual ex-
periments, we first describe the preprocessing of the data, which
was carried out in the same manner for all experiments.

A. Preprocessing

The signal recorded during an fMRI experiment does not only
consist of the hemodynamic response but is rather a complex
mixture of several sources with different spatial and temporal
behavior. An example of such a source, which is temporally
constant but spatially varying, is the brain being imaged whose
physical structure in terms of white and grey matter and cere-
bral spinal fluid causes spatial variations in the recorded signal.
Other sources that have already been mentioned are physiolog-
ical sources, such as pulse, breathing, and movements by the
subject during signal acquisition, and system sources, such as
baseline drift and ghost images. These typically vary both spa-
tially and temporally.

Taking the approach of generative modeling, there are essen-
tially two ways we can deal with such uninteresting sources.
Either, we can try to explicitly account for them in our model
or try to filter them out of the data before trying to model the
sources we are actually interested in.

We have chosen a bandpass filtering approach, since this al-
lows us to use our knowledge about the HR and the experiment
at hand to filter out whatever signal that cannot reasonably orig-
inate from the stimulus induced activation. At the same time, we
note that since our knowledge about the HR is limited and we do
not want to risk to filter out any signal of interest, the width of
an accordingly chosen bandpass filter will almost certainly let
some uninteresting signals slip through. Averaging over trials
will retain the trial-periodic signals, while further suppressing
random signals and signals with different periodicity.

In all of the following experiments data were preprocessed as
follows: the signals recorded at each pixels were filtered through
a low-pass filter with a cut-off frequency of 23 times the fre-
quency of the stimulation. The resulting signal was subtracted

from the original signal, resulting in a high-pass filtering. Note
that this removes the anatomical image from the signal, which
is important since our model is trying to capture spatial vari-
ations in the HR, which otherwise would be confounded with
spatial variations in the anatomical image. As a second step the
high-pass filtered signal was again passed through a low-pass
filter, with a cut-off frequency of three times the frequency of
the stimulation. This will suppress signals from physiological
sources, such as breathing and pulse.

B. Synthetic Data

The synthetic data set was produced using time courses from
a real fMRI experiment recorded at a patch of 1010 pixels
where it is assumed that no stimulus-induced activation occurs.
The time courses consisted of 912 samples for each pixel, which
were treated as 76 trials of 12 samples each. This corresponded
to the trial length of the experiment from which they were taken.
These noise time courses were then added to synthetically gen-
erated HR responses, in the shape of Gaussian functions with a
periodicity of 12 time steps. The 10 10 patch was divided in
three regions, where each region had a distinct, associated HR
response, as illustrated in Fig. 2. Three different data sets were
produced in this fashion, corresponding to three different signal
to noise ratios (SNR’s), by varying the amplitude of the added
noise. The amplitudes were chosen so that the SNR in the re-
sulting trial-averaged data was 2.0, 4.0, and 8.0, corresponding
to SNR’s in the raw signals of 0.20, 0.41, and 0.81, respectively.

The model trained on this data had three classes, which shared
a common prior for the parameters, given in Table I. They were
initialized with random samples from a distribution with the
same means as this prior, but with the standard deviation param-
eters divided by ten. The resulting initial model was then fitted
to the image data using Algorithm 1. The results for different
SNR are shown in Fig. 3. We note the following.

• The accuracy improves with the SNR, both in terms of the
segmentation and the estimated HR models.

• For lower SNR, the confusion in the segmentation is
greater between the two classes which have a similar HR
(grey and black).

• The spatial distribution of the pixel classes is fairly smooth
in all three examples.

This is all in line with what we would expect. To investigate
whether the MRF prior has any effect on these results, we also
reordered the pixels within the image randomly and repeated the
experiment. In all three cases the performance was poorer. In
fact, for the data sets with SNR’s of 2.0 and 4.0 it was no longer
possible to confidently determine the correspondence between
the estimated and true HR classes.

C. Sentence Comprehension Data

In this example we use data from an fMRI experiment de-
signed for investigating the neuronal correlates of sentence com-
prehension in the brain [25]. Subjects had to decide whether
an aurally presented sentence contained a syntactical violation
or not. Each trial started with a sentence being read out, which
lasted 2.3–4.5 s. fMR images were collected every 2 s, with 12
images being recorded in each trial. We note that this repetition
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Fig. 2. Illustration of the generation of synthetic data. The 10� 10 image
patch (top left) was divided into three regions, black, grey, and white, each with
an associated HR response. These are shown in the surrounding plots where
the HR response of the associated region is plotted with a solid line and the
responses of the other regions are plotted with dotted lines. Note that the grey
and black regions are closer to each other than to the white region in terms of
the HR response time course.

time may result in aliasing of physiological noise [29]. A subset
of 72 trials were selected and were preprocessed as described in
Section III-A.

As a first experiment, data from the selected trials were aver-
aged and the resulting data were used to fit a model with 2 HR
functions ( ) and a constant background function intended
to explain regions where no task-related activity occur. This con-
stant function has a single parameter, namely its value, whose
maximum likelihood update is given by averaging over the time
course obtained from a weighted average over pixels, where the
weights are given by background . The
HR functions shared a common prior given in Table I andwas
set to 1.0. The fitting procedure started with 20 iterations during
which was decreased from 10 to 1 andwas held fixed at 1.0,
followed by another 20 iterations where andα was al-
lowed to adapt.

The left image in Fig. 4 shows a-map (see, e.g., [5]) for the
chosen data set, overlaid on the functional mask. It is based on
correlation with a time shifted boxcar-function thresholded at a

score of 2.75 with a significance value of 0.05. Note that only
pixels with positive activation are shown as we do not consider
deactivated regions. The right image in Fig. 4 shows the cor-
responding soft segmentation of the functional mask obtained
from our model where pixels have been color coded according
to their class probabilities. Red and green correspond to the HR
model functions plotted in Fig. 5 while blue corresponds to the
background function. Note that although the model is generally
fairly confident, there are pixels, especially around borders be-
tween regions, which are not clearly classified. They are, e.g.,
purple rather than blue or red. The number of pixels not clas-
sified with certainty will increase somewhat if we remove the
MRF prior and base the classification only on the likelihood
scores, but the overall picture will remain the same.

As can be seen, the two HR functions take on different roles,
one explaining regions with a relatively strong and slightly ear-
lier response and corresponding roughly to pixels with strong

activation (high scores); the other explaining a weaker and
slightly later response and including pixels with lower activa-
tion.

As a second example using this data set, we looked at data
from a selected spatial region, formed by the red pixels inside
the rectangular white border in the right image in Fig. 4. In
this region, which corresponds roughly to the left superior tem-
poral gyrus (STG) and Heschl’s gyrus (HG), a strong HR was
found in the averaged data. Now we apply the model to data
from individual trials separately. We want to investigate the HR
characteristics over this region and how they vary over trials.
The model used was identical to that described in the previous
example, with the exception that it was fitted to data from a pre-
defined region, a single trial at the time.

Fig. 6 shows a segmentation and corresponding time courses
for one trial. This kind of segmentation appeared in 20 of the
72 trials. This result suggests that: 1) regions of activated pixels
may not be homogeneous, but rather have subregions with dif-
ferent characteristics in their HR and 2) during a set oftrials,
it may be that distinct patterns of spatio-temporal activity are
observed, where . Averaging over trials may hide
this!

What gives rise to these different patterns of activity in this
experiment is not known. A plausible neuroanatomical explana-
tion is given by assigning the red region to the primary auditory
cortex (HG), while the green region, which is located anteriorly
and more laterally on the STG, corresponds to the secondary
auditory cortex. Although, at the neuronal level, the time differ-
ences between these areas are presumably small (in the order
of 100 ms), the corresponding differences at the metabolic time
scale might be greater. A different explanation is of a vascular
nature. The early response might arise from a mere cortically
weighted area, while the late response might correspond to a
venous area.

D. Task Switching Data

This experiment was designed to investigate the effects of
task switching, as detected by fMRI [26]. In each trial, subjects
received a visual stimulus in the form of aor a , which was
shown in either red or green, and had to respond by pressing one
of two buttons: right or left. The green stimulus represented the
repetition task, such that the subject should press the left button
for and the right button for . In the switch task, where the
stimulus was shown in red, the responses were swapped so that
the subject should press the right button forand the left button
for . The whole experiment consisted of 125 repetition trials
and 20 randomly interspersed switch trials.

Each trial lasted 16 s, with an fMR images collected every
two seconds. We selected data from a single slice, consisting
of the 20 switch trials and 20 randomly chosen repetition trials,
excluding trials that followed immediately after a switch trial.
The data was preprocessed as described above and averaged
separately over switch and repetition trials. Two models were
fitted separately to the two data sets. The results are shown in
Figs. 7 and 8. In Fig. 7, pixels in the functional mask have been
assigned to the HR class with highest posterior probability, as
color coded in Fig. 8, and overlayed on the anatomical image.
Those pixels that were assigned to the background have been



32 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 19, NO. 1, JANUARY 2000

Fig. 3. Results for the synthetic data sets for different SNR’s. Left to right, the images shows the MAP classification of the pixels and the plots show the
corresponding estimated HR functions (solid) with their targets (dotted) for SNR’s 2.0, 4.0, and 8.0. The scale of the plots is identical on all three rows. The
correspondence between the estimated and true HR classes was determined by inspections of the plots.

TABLE I
HYPERPARAMETERS FOR THEPRIOR

DISTRIBUTIONS OVERHR FUNCTION PARAMETERS IMPOSED IN THE

EXAMPLES. � AND z ARE MEASURED IN(LOG) TIME STEPS, WHILE z AND o

ARE MEASURED(LOG) RELATIVE TO A NORMALIZED BOLD RESPONSE

Fig. 4. The left image shows a correlation basedZ map overlaid on the
functional mask (grey), for the data described in Section III-C. The right image
shows a corresponding soft segmentation obtained using our proposed method.
In theZ map, pixels have been colored according to theirZ score, with dark
red being low and white being high. In the right image, pixels have been
color coded according to their class probabilities, with the corresponding HR
model functions plotted in Fig. 5 the blue class corresponds to the background
function. The white rectangular boundary in the right image corresponds to the
area shown top right in Fig. 6.

left “transparent,” showing the underlying anatomical greyscale
image. Note that the response to the switch task is stronger and
comes slightly later, relative to the response to the repetition task
(solid and dashed lines, respectively, in Fig. 8) which is to be
expected. There are fewer pixels assigned to the background in
the switch task response but, at the same time, we note that the
gain of the dominating class is fairly low for both the switch and
repetition trials.

IV. DISCUSSION

This paper describes a multivariate probabilistic method for
modeling fMRI data and gives examples of how it can be used.

Fig. 5. The HR functions corresponding to the segmentation shown in the right
image of Fig. 4. The HR functions are plotted together with the data points they
have been assigned by absolute segmentation, i.e., for each pixel, the most likely
class has been chosen. In the plot, thex position of the data points corresponding
to time steps has been slightly perturbed by adding a small amount of Gaussian
noise in order to give a better view of the data.

Fig. 6. The top-right inset corresponds to the area inside the rectangular white
border drawn at the left side of the right image in Fig. 4. The segmentation
shown in this inset is color coded as in Fig. 4, with the corresponding HR
functions shown in the plot, using the same plotting scheme as in Fig. 5.

It segments (regions of) fMR images into regions with distinct
characteristics in their HR and provides, for each region, a para-
metric description of its HR characteristics which can be readily
understood by physicians and psychologists.

The estimated HR model functions could, if desired, be used
in conjunction with, e.g., a linear regression model for detection
of activated regions.
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Fig. 7. Segmentations of the functional mask, for the task switching data
described in Section III-D, overlayed on the anatomical image. The image to
the left shows the segmentation obtained for the switch condition whereas the
right image corresponds to the repetition condition. The color coding of the
pixels correspond to the color coding of the HR functions shown in Fig. 8.

Fig. 8. The HR functions corresponding to the segmentations in Fig. 7. The
solid lines correspond to the switch condition (left in Fig. 7), while the dashed
lines correspond to the repetition condition (right in Fig. 7).

Since, the overall method is independent of the choice of HR
model functions, alternative functions could be considered. We
could, for example, consider modeling deactivation. Extending
the spatial model to more than two dimensions is simply a matter
of implementation.

A. Generalizing the Stimulus Model

In this paper we have restricted ourselves to stimulus mod-
eled as a spike at the beginning of the trial, thereby circum-
venting the need for a convolution model. However, we could
consider introducing a convolution model, making use of the
convenient form of the Fourier transform of the Gaussian func-
tion [27], which yields an approximate closed form update for
the HR parameters. This would also allow the model to be used
in a block-trial setting. However, this approach also requires av-
eraging over trials and, thus, the stimulus model must be iden-
tical for all trials (or blocks).

Another current restriction on the stimulus model is the inter-
trial time, which is required to be sufficiently long to allow the
HR to return to baseline. Also, this restriction could be relaxed

using a convolution model, as long as the HR is assumed to re-
main constant during all the trials and add linearly [3].

B. Generalizing the Noise Model

At the moment, we assume that preprocessing the data suf-
fices to remove physiological noise in the data, e.g., arising from
the pulse and breathing of the subjects. However, we could con-
sider including such sources as part of the model. Petersenet
al. [28] propose modeling the effects from pulse and breathing
using parametric functions. Biswalet al.[29] recorded heart and
respiratory rates during fMRI scanning and used the resulting
signal to construct band-block filters to filter it out of the fMRI
data. However, such recordings could also be used to aid mod-
eling of such signals in fMRI data, taking account of them that
way.

Alternatively, we could incorporate a more elaborate noise
model, treating uninteresting signals in the data as temporally
correlated noise. An example of this approach is given by Bull-
moreet al. [9], who suggest using a first order autoregressive
[AR(1)] noise model to account for temporal structure in the
data that cannot be explained by the stimulus.

In the spatial domain, we currently assume that pixels are
independent given their class. In other words, we assume that
segmenting an fMR image into regions with distinct HR char-
acteristics accounts for all the spatial correlations in the image.
However, Kruggel and von Cramon [10] reported spatial auto-
correlations in the residuals over regions of pixels (chosen by
hand) whose time courses were modeled using a common HR
model function. They addressed this by incorporating an AR(1)
noise model in the spatial domain and this approach could also
be considered using our method.

A complementary issue is whether the noise model should
be spatially dependent or stationary. For example, fluctuations
due to pulse to have a larger amplitude in the vicinity of larger
vessels [13]. We also could consider allowing the noise level
to vary over the spatial domain, but care must taken to control
the degrees of freedom in the model. In the simplest case, we
could let each HR function and eventual background function(s)
have their own noise levels. A more general model could use a
discrete or continuous MRF for the noise level. Conceptually,
this would be fairly straightforward but would require a more
complex implementation, which would also be more demanding
in terms of computation.

C. Choosing and

An open issue in our current model is the setting of user de-
fined parameters. In the examples described in Section III, the
number of HR (and background) functions, the prior for the HR
function parameters, and the scale parameter for the MRF,,
were all chosena priori and kept fixed. The hyperparameters
specifying the prior over the parameters of the HR functions
should be selected based on knowledge about the experiment,
neurophysiological knowledge, etc.

The number of HR functions can strongly influence the
final fitted model. If we again consider the synthetic data dis-
cussed in Section III-B and fit models with varying this in-
fluence is clearly demonstrated. Fig. 9 shows the segmentations
obtained with and for SNR’s 2.0 and 8.0. They
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Fig. 9. Segmentations obtained for the synthetic data described in
Section III-B, varying the SNR and the number of HR functions.

also demonstrate the influence of the SNR. When the number of
HR functions in the model is smaller than the number that are
actually generated the data, the model cannot possibly be fully
accurate. As long as the SNR is sufficient, the model will pro-
vide as close a fit as possible (second left in Fig. 9). However, at
low SNR’s and with limited degrees of freedom, the model may
miss the underlying structure in its attempts to explain as much
as possible of the variance in the data (left). When, on the other
hand, there are spare degrees of freedom in the model, i.e., when

is higher than the actual number of HR functions that gen-
erated the data, these may be used to fit artifactual structure in
the data that arise only from noise. Also, in this case, the impact
depends on the SNR, as illustrated by the bottom row images in
Fig. 9.

The problem of choosing is a essentially a problem of
choosing the appropriate model complexity. A too simple model
will not be able to adequately model the true signals, while an
overly complex model instead runs the risk of fitting to noise ar-
tifacts rather than the true signals. Several approaches have been
proposed for inferring from the data [30]. However, most rely
on the evaluation of the full penalized log likelihood and, in our
case, the MRF model used in the spatial domain unfortunately
causes problems. As mentioned in Section II-B, we generally
cannot compute the partition function of the MRF prior,[see
(8)]. This causes no problems for fitting the parameters of the
HR functions in Section II-C, since is independent of these
parameters. However, it will cause a problem if we want to com-
pare models with different values for, as does depend on

. We could consider a mean field approximation also ofbut
this will mean we end up comparing bounds, not actual objective
function scores. Alternatively, we can choose to ignore the MRF
prior for the estimation of and form an objective function
based on the (unpenalized) log likelihood and a penalty term
that increases with the degrees of freedom in the model [30],
although such a method may underestimate, since it ignores
the constraints imposed by the MRF prior.

The same problem will arise if we try to derive a scheme
to set , which controls the smoothness of the spatial distribu-
tion. Zhang [31] proposed an approximate update formula but
reported that the segmentation results were only marginally im-
proved compared to those obtained by settingempirically by
hand, while the computational cost was considerable.

We conclude that, for the time being, and are best
chosen by experimenting, where the experimenter can also
take his or her knowledge about physiology, the fMRI ex-
periment, etc., into account. The difficulties in fully incor-

porating such expert knowledge into the model means that
automatic selection schemes inevitably will be inferior to
human guided ones.

D. Future Research

The first example, Section III-C, used data which was aver-
aged over all trials from an experiment, whereas the second ex-
ample used data from individual trials, without considering the
data from any preceding or subsequent trials. Given the results
from this second example, a natural next step is to extend the
method to model data from multiple trials, going an interme-
diate way between averaging and individual modeling of single
trials. The first step would be a mixture model, containing sev-
eral instances of the model discussed in this paper, but still many
fewer than there are trials. In such a mixture model each instance
would explain a set of trials with similar spatio-temporal charac-
teristics, which may or may not correspond to different patterns
in the stimulus.
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