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Abstract

Besides normal aging, a number of brain diseases are
known to reduce the amount of grey matter in the brain.
To better understand the nature and progression of these
disease processes, quantitative measurements of relevant
brain structures, such as the regional cortical thickness,
are highly desirable. Starting from high resolution volu-
metric MR images of the human head, a reliable segmenta-
tion procedure for the grey matter compartment is described
which allows thickness measurements at sub-voxel resolu-
tion. Simulation experiments and comparisons with pub-
lished data from histological examinations prove the valid-
ity of results.

1. Introduction

A thin sheet on the outer surface of both brain hemi-
spheres contain approximately 80% of the neurons of the
central nervous system. This so-called neocortex (grey
matter, GM) measures only 1.5-4.5 mm [1], but its extent
reaches 4000 cm3, due to the folding (gyrification) of the
brain. Strong local connections (0-3 mm) between neurons
are formed within this sheet, thus promoting the idea of lo-
cal ”processing units”. More remote (20-100 mm) connec-
tions are acheived via fibers in white matter (WM) tracts, as
either connections between gyri, hemispheres, or between a
gyrus and core centers of the brain, the basal ganglia.

A number of factors reduce the amount of grey matter
during life. Most notably, a global cortical thinning oc-
curs during aging [9, 16]. Neurodegenerative diseases, such
as M. Alzheimer [15] and Chorea Huntington [13], lead to
characteristic circumscribed atrophies of the brain, and cog-
nitive disabilities acquired from these diseases may be re-
lated to the cell loss in a specific neurofunctional area. For
neurobiology, it is highly interesting to study the regional
cortical thickness and its variation under the condition of
degenerative brain diseases.
T1-weighted, high-resolution 3D magnetic resonance

(MR) scanning offers an easy way to obtain an in-vivo de-
scription of the human brain. In fact, an increasing number
of clinical studies incorporate recording such volume data
with the intent to extract quantitative descriptors for patho-
logical processes from them.

The extraction and description of the neocortical surface
has received much interest in the computer vision litera-
ture, especially its differential geometric aspects, and far
too many references exist to list them here (for an introduc-
tion, see [6]). Most surprisingly, very little attention has
been paid to the neurobiologically relevant problem of de-
termining the cortical thickness by image processing. To
best of our knowledge, only a few very recent references
focus on this problem [4, 9, 22], however they do not offer
a satisfying solution.

A reliable segmentation of the neocortical layer is con-
sidered a non-trivial task. A simple-minded strategy for de-
termining the cortical thickness would use a segmentation
of the white matter, apply a distance transform to it, and
record the values on the surface of the grey matter as its
thickness. However, the partial volume effect found in any
brain imaging method leads to fuzzy boundaries between
the grey matter and its neighboring compartments, the white
matter and to the cerebrospinal fluid (CSF). Thus, a high
variance is expected in the results of voxel-based methods.
”Sub-voxel” techniques must be applied to warrant neuro-
biologically meaningful results.

Another problem complicates the segmentation of the
grey matter. To a certain extent, all MR imaging protocols
are sensitive to inhomogeneities of theB1 magnetic field,
which results in a spatial variation of the image intensity.
So care must be taken to correct for these intensity inho-
mogenities in order to obtain values which are comparable
across brain regions and between individuals.

Even if a successful segmentation is obtained, care
should be taken to interpret the result as grey matter. The
brain is suspended in the skull, and supplying arteries,
draining veins and cranial nerves connect the brain to other
structures. Unfortunately, especially veins and meninges
are hard to discriminate based on intensity criteria, and thus
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may contribute to the segmented grey matter compartment.
In this paper, we describe an approach to determine the

cortical thickness fromT1-weighted, volumetric MR im-
ages of the human brain. Because brain atrophies are often
circumscribed, we show how the measures are obtained in
gyral subcompartments and in relation to the folding char-
acteristics.

2. Algorithms

We now describe our approach for the grey matter seg-
mentation and the measures derived from it. Our procedure
is inspired by recent publications of Xuet al. [21], Zeng
et al. [22], and Magnottaet al. [9]. Some steps corre-
spond to well-known methods in image processing, so we
deliberately keep the description short. Instead, we focus
on details considered important for a reliable and fast seg-
mentation procedure.

We used high-resolution,T1-weighted MR data sets of
the human head. First, we visually identified the position
of key structures of the stereotactical coordinate system, the
anterior and posterior commissure [7]. Then, we performed
an affine transformation using b-spline interpolation [18] to
yield an aligned data set in an isotropical resolution of 1
mm.

It was necessary to correct for intensity inhomogeneities,
which would lead to segmentation errors especially at the
GM-WM boundary in small gyral stalks. From the set of
proposed methods, we selected the algorithm described by
Pham and Prince [11]. It models the image as a set of differ-
ent materials with different Gaussian-distributed intensity
distributions, which are distorted by a spatially smooth, but
varying multiplicative background field. A fuzzy c-means
classification algorithm is used to determine per-voxel class
probabilities, and the background field is recovered regu-
larized by a partial differential equation system. We used
the recovered background field to correct intensities in the
original data set.

An initial WM segmentation was obtained from the class
containing mostly WM voxels in the previous step by re-
moving connections to its outer hulls. Necessary steps were
described elsewhere [7]. The brainstem and cerebellum
were removed by cutting the brainstem at a level 15 mm
below the posterior commissure and selecting the biggest
connected component.

The surface of this WM segmentation was computed via
the marching tetrahedra algorithm [10], which yielded topo-
logically correct triangulated surface meshes of 500-900 k
vertices. This mesh may be simplified by any published
method. We applied the ”wrapper”-algorithm [5] to acheive
an 8-fold reduction of the vertex count.

An improved model of the WM surface was obtained by
treating this initial WM surface as a deformable model [17].

With modifications, we follow the ideas of Xuet al. [20]
and Dale and Sereno [2] here. On any vertexv0 in the mesh,
internal and external forces act until a balance is acheived.
The internal forceFint tries to center a vertex among its
edge-connected neighborsfvigi=1;N :

Fint =
1

N

NX

i=1

(vi � v0): (1)

The first external forceFext;1 tears a vertex outwards along
the direction of its surface normaln0. This force is exerted
by an intensity-gradient fieldf , which is computed from a
convolution of the intensity-corrected imageI with a Gaus-
sian kernelG: f = r(G Æ I) [20]:

jFext;1j = f(v0) � n0; (2)

where� denotes the inner product. The second external
force Fext;2 captures the surface within a narrow range
around an image intensityIlim:

jFext;2j = tanh(� (I(v0)� Ilim)); (3)

where� corresponds to the capturing range and is related to
the noise level in the data set.Fext;2 pushes a vertex outside
until a position with intensityIlim is reached, and inside if
the intensity is too low. A suitable value forIlim was chosen
as the average of the class center intensities for WM and
GM in the initial segmentation step. Forces are weighted
to ensure good convergence properties during iterationst of
the surface adaption process:

v0(t+ 1) = v0(t) + w1 Fint + (4)

n0(w2 jFext;1j jFext;2j+ w3 jFext;2j):

The image gradient forcejFext;1j is weighted by the inten-
sity force jFext;2j in order to reduce the outward-driving
force adaptively when the destination intensity range is
reached. This constraint also reduces the chance of intro-
ducing self-intersections. The process is iterated until the
sum of vertex position shifts falls below a pre-set limit. The
result is kept as the final representation of the WM surface.

We determined local curvature properties of this sur-
face using the coordinate transformation method [14]. To
each vertexv0, a tangential plane is adapted, which is
described by its two orthogonal vectorsx and y. Each
vertexfvigi=1;N in the local neighborhood is represented
by its local coordinates(xi; yi; h(xi; yi)), whereh(�) de-
notes the distance to the plane. A parabolic surface patch
O(x; y) = (x; y; ax2+2bxy+ cy2) is adpated to this set of
vertices, and the Gaussian curvatureK = 4(ac � b2) and
the mean curvatureH = a + c are extracted and stored as
an attribute of the vertexv0.

Next, the GM surface was computed from the WM sur-
face by settingIlim to the average intensity of the GM and
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CSF class and performing the surface adaption as described
above.

The GM thickness was interpreted as the local minimal
distance between the GM and the WM surface. This thick-
ness was computed for each vertex as follows: A vertex
v0;GM of the GM mesh was projected onto a triangle of
the WM mesh along its plane normal. If the projection
point vp;WM was found within the triangle, the distance
jjv0;GM � vp;WM jj was determined, and the shortest dis-
tance to all triangles was recorded as the cortical thickness
at v0;GM . A surprisingly large number of different cases
had to be discriminated in this apparently simple geometri-
cal problem [3]. In order to avoid the cost ofO2 operations
for a brute force search, we implemented a ”spatial cache”:
for each voxel of the volume, we recorded a list of vertices
located within this voxel. Since the GM surface originated
from the WM surface, a first guess for the closest vertex on
the WM mesh is given by the WM vertexv0;WM with the
same index asv0;GM . We limited the search for the closest
projection point to a small subregion aroundv0;WM , guided
by the spatial cache, which resulted an approximately lin-
ear performance. The cortical thickness was stored as an
attribute of vertexv0;GM .

Now, a number of options exist to introduce subregions
on the cortical surface. Such regions may be defined on the
basis of the atlas transformation applied in the beginning.
For its simplicity, we preferred a regional segmentation of
sulcal substructures, the so-called sulcal basins [8]. Sulci
of the WM segmentation were closed by a morphological
operation. A constrained distance transform was applied to
these sulcal fillings, and local maxima were recorded as the
deepest points in the sulci. From these deepest points, a
region growing algorithm introduced a segmentation by la-
belling the neighborhood. Thus, sulcal subregions received
different labels and were interpreted as structural entities of
the cortex. This label was stored as an attribute of vertex
v0;GM .

As a result of this procedure, we obtained a triangulated
mesh representing the GM surface. At each vertex, we have
the position, the normal, the local curvature, the cortical
thickness and a region label.

3. Experiments

We conducted a series of experiments to evaluate the pre-
ciseness of the measurements, to find suitable ranges for the
parameters of this procedure, and to study results in an ex-
ample normal subject and a patient suffering from clinically
diagnosed Alzheimer’s disease.

3.1. Accuracy and Precision Using Simulated Data

In order to obtain some information about the precise-
ness of the measurements under the condition of the partial
volume effect, a simulation experiment was conducted. A
sphere of intensityI = 140 and diameterd = 80 voxels was
located in a cubic volume of2563 voxels of background in-
tensityI = 20. A spherical layer of intensityI = 80 and
varying diameter was placed around the center sphere, sim-
ulating the GM compartment. To simulate the partial vol-
ume effect, the cube was linearly downscaled by a factor of
4. WM surfaces were computed atIlim = 110, GM sur-
faces atIlim = 50. Measured thickness values were com-
pared with the true values in Fig. 1. Except for a distance of
0.5 mm, the difference between the measured and the true
distance was less than 1.5 %, with a variance of less than 2
%.
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Figure 1. Sphere simulation experiment: Mea-
sured mean and variance of the layer as a
function of the simulated thickness.

3.2. Parameter Study

The surface adaption algorithm is governed by the inten-
sity limit Ilim, the intensity window � and the weights wi.
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The relative ratio of the weights influence the mode of sur-
face propagation, while the absolute values of w2 and w3

determine the propagation speed. From a series of experi-
ments, we found w1 = 0:05, w2 = 0:0001, and w3 = 0:01
as suitable for all studied problems. Convergence was as-
sumed after a fixed number of 500 iterations. The inten-
sity window is related to the noise level of the data set, and
� = 0:3 was chosen here. Higher values tended to impede
convergence, while smaller values produced surfaces which
were considered too smooth.

The dependency of the cortical thickness on the in-
tensity limits was studied for a cortical patch from a
normal subject. The WM limit was set to values of
f100; 110; 120; 13 0; 140g consecutively, and was recorded
as a function of the intensity difference Ilim;WM�Ilim;GM .
Results were compiled in Fig. 2.
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Figure 2. Cortical thickness as a function
of the grey matter intensity interval, starting
from different white matter border intensities
for a sample normal subject. An approxi-
mately linear increase of 0.045 mm per inten-
sity unit was found, which is interpreted as a
consequence of the partial volume effect.

For the intensity range from 60..140 units in this data set,
an almost constant increase in cortical thickness of 0.045
mm per intensity unit was found. This finding was inter-
preted as a consequence of the partial volume effect, which
leads to a continuous intensity falloff across the GM layer.
As suggested by Xu et al. [21], we selected values for Ilim,
which corresponded to the crosspoints of the class mem-
bership probabilities from the initial segmentation step, e.g.
Ilim;WM was set to the intensity where p(WM) = 0:5 and
p(GM) = 0:5.

3.3. Examples

As a first example, we selected a MR data set from a
normal healthy subject. 128 sagittal T1-weighted slices
of 2562 voxels were obtained at a spatial resolution of
0.94x0.94x1.5 mm on a Bruker Medspec 100 system at
3.0 T using a MDEFT sequence. Our segmentation pro-
cedure was applied to this data set, with Ilim;WM = 120
and Ilim;GM = 60. The measured cortical thickness was
color-coded on the GM surface (see Fig. 3, next page).

An elderly patient suffering from Alzheimer’s disease
was chosen as a second example. Here, the data set was
recorded on a Siemens Vision system at 1.5 T using a GRE
sequence with 128 axial slices of 2562 voxels at a spa-
tial resolution of 0.97x0.97x1.4 mm. Results are shown
as Fig. 4 (next but one page), with Ilim;WM = 140 and
Ilim;GM = 70 in this case.

In comparison with the normal case, a marked general
atrophy was found in fronto-temporal parts of the brain.
The parietal and occipital lobe, as well as posterior portions
of the temporal lobe appeared relatively unaffected. How-
ever, there was a general reduction in the cortical thickness,
which was more prominent in the frontal lobes. Thickness
measurements in subregions were obtained by examining
vertices with certain region labels. Results for neurofunc-
tionally interesting subregions were compiled in Tab. 1 on
the next page.

These quantitative measurements underline the qualita-
tive message from Fig. 4: a general reduction of the cortical
thickness was found for the patient case, with a strongest re-
duction in the frontal lobes of�40 %. Values for the normal
case compared nicely with published data from histological
examinations: Middle frontal gyrus: 2.47�0.29 mm [12],
inferior frontal gyrus: 2.45�0.28 mm [12], superior tempo-
ral gyrus: 2.49�0.10 mm [16], banks of the calcarine sul-
cus: 1.72�0.18 mm [23]. We assume that the higher vari-
ance in our results originated most likely from noise. We
determined a noise level of � = 6:5 in our MR data sets,
leading to an error of �0.3 mm on both GM boundaries.

Histological examinations revealed that the cortex at
fundi reaches only 50-60 % of the thickness at gyral crowns
[1, 19]. Similar ratios were found for an example patch of
the frontal cortex in the normal case (see Fig. 5, next but one
page). Concave fundus regions (magenta) had a thickness
of 1.5..2.0 mm, whereas convex crown regions (yellow-red)
a thickness of 2.4-2.8 mm.
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Figure 3. Cortical thickness (in mm) mapped onto the grey matter surface of a normal subject,
reconstructed from top (top), and left (below). Note that the cortex is thicker in the frontal and
temporal lobe (�2.5 mm), in comparison with the motor and the visual cortex (�1.7 mm).

Sulcal Substructure Normal Subject Patient
left right left right

Superior frontal sulcus, posterior part 2.437�0.481 2.377�0.503 1.314�0.260 1.425�0.256
Central sulcus, inferior part 1.544�0.518 1.617�0.581 1.232�0.188 1.220�0.249
Middle frontal sulcus, middle part 2.483�0.495 2.479�0.444 1.370�0.345 1.319�0.261
Intraparietal sulcus 2.402�0.524 2.359�0.450 1.500�0.500 1.381�0.330
Superior temporal sulcus, middle part 2.235�0.452 2.680�0.436 1.628�0.499 1.464�0.451
Calcarine sulcus, posterior part 1.586�0.505 1.754�0.474 1.338�0.631 1.291�0.613

Table 1. Mean and variance of cortical thickness (in mm) from the cortical banks adjacent to the
named example sulcal subregions. Except for the visual cortex, an atrophy of 60% was noted in the
example patient.
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Figure 4. Cortical thickness (in mm) mapped
onto the grey matter surface of a patient
suffering from Alzheimer’s disease, recon-
structed from top (top), and left (below). In
comparison with the normal subject (see Fig.
4), the cortex is generally thin (�1.5 mm), es-
pecially in fronto-temporal parts of the brain,
where a white matter atrophy was noted as
well. The cortical atrophy was more promi-
nent at crowns, whereas the cortical thick-
ness at fundi was similar to the normal sub-
ject.

Figure 5. Top: Patch from the right frontal
lobe of the normal subject. The mean curva-
ture of the white matter surface was color-
mapped onto the surface. Magenta corre-
sponds to concave (i.e. fundi), red to con-
vex areas (i.e. gyral crowns). Below: Cortical
thickness (in mm) mapped onto the grey mat-
ter surface of the same patch. Sulci were un-
folded in order to expose fundi. By compar-
ison, the cortex is generally thicker at gyral
crowns in comparison with fundi.
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Fig. 6 shows a plot of the cortical thickness as a func-
tion of the local curvature, which confirmed the qualitative
finding above. Interestingly, the patient’s cortex at fundi ap-
peared to have normal thickness measurement, thus, the at-
rophy may affect crown regions only. Of course, more cases
need to be studied before final conclusions may be drawn.
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Figure 6. Mean and variance of the corti-
cal thickness as a function of the curvature,
as determined from the same patch as in
Fig. 5. The cortex is thicker at convex ar-
eas (typically at gyral crowns) in comparison
with concave areas (fundi). Regression line:
1.85+0.66x, r2=0.0225, p=0.

4. Discussion

The focus of this study was to develop a reliable segmen-
tation procedure for the neocortex as revealed by single-
channel MR data sets of the human head. This procedure
may be called automatical in a sense that no operator inter-
action is required except for the initial alignment step. The
only sensible settings are the WM and GM limits, which
define the boundary of the GM compartment. While a sim-
ple assignment based on the class probabilities in the ini-
tial segmentation appears attractive and plausible, more data
sets need to be analyzed in order to confirm this suggestion.
An efficient layout of the data structures and careful opti-
mization of the algorithms ensured a satisfying performance
even for large meshes (>1000 k vertices). If such non-
optimized meshes are studied, the whole procedure needed
less than 3 h computation time (R10K processor at 195
MHz).

A few caveats: The intensity correction scheme exerts a
critical influence on thickness results in certain areas, and

more cross-checking with histological results is necessary
to ensure reliable results for the whole brain. Small areas
of high thickness values (” red spots” in Fig. 3) often cor-
respond to segmentation errors, where structures adjacent
to or connected with the brain (e.g., meninges and vessels)
are assigned to the grey matter compartment. The simple
region selection scheme applied here needs revision, be-
cause a consistent region labelling must be introduced when
studying groups.

Elaborate schemes for grey matter segmentation were
developed by Xu et al. [21]. However, they acheive a seg-
mentation of the central layer of the GM, and it may be
hard to derive a measure for the cortical thickness from their
segmentation. The only study that used image processing
methods to derive thickness measurements in vivo was con-
ducted by Magnotta et al. [9]. Although they report results
from a large number of cases, they segment the GM-WM
boundary and the central GM layer, and double measured
values to obtain the cortical thickness. Given the uncertain-
ity of defining a central GM layer and the necessary sym-
metry assumption, we regard this approach as questionable.
An interesting alternative to our approach was developed by
Zeng et al. [22], who used a level-set method with coupled
surfaces to segment both boundaries in a single step. Their
reported coupling constraint of 2.4-3.6 mm surface distance
appears too narrow on the basis of the results obtained here.

Neurobiologically even more interesting is the regional
cortical volume, which is easily derived from the regional
thickness measurements. The intent of this research is to
provide a framework for the quantitative morphometric de-
scription of disease processes in the brain. The grey mat-
ter segmentation scheme proposed here forms a significant
building block within such a framework.
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