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A classical item-recognition task was used to exam-
ine human verbal working memory in an event-related
functional MRI (fMRI) study. A highly flexible experi-
mental design incorporated a broad variation of mem-
ory load and delay time. This design allows for only
three or four repetitions per stimulus condition. In a
first step, linear regression analysis was applied to
locate functional activation in the fMRI data. As a
second step, the time course of the hemodynamic re-
sponse (HR) was analyzed using nonlinear regression,
which served to quantify the dependency between HR
shape properties and stimulation conditions in sev-
eral regions-of-interest. On the basis of this study, a
closer description of the frontoparietal network in-
volved in verbal working memory was possible. © 2000

Academic Press

Key Words: fMRI; item-recognition; verbal working
memory; hemodynamic modeling; nonlinear regres-
sions.

INTRODUCTION

The goal of this paper is to demonstrate the useful-
ness of a quantitative analysis of functional MRI
(fMRI) data by nonlinear regression. Shape parame-
ters of the hemodynamic response (HR) are derived by
trial-wise modeling the fMRI time-series in regions-of-
interest (ROI), and quantitative relationships between
the shape parameters and the stimulation context are
obtained from the regression analysis. In addition to
the activation amount, the temporal behavior of acti-
vated areas on parameters of the experimental stimu-
lation is quantified as well, which allows establishing a
closer link to behavioral reaction times. As a corollary
of embedding the quantitative analysis in a regression
context, it is possible to revise the experimental design
for a higher flexibility. Meaningful results may be
achieved from only three or four repetitions of a given
stimulus condition, which is a desired feature for cog-
nitive experiments. For this demonstration, we se-
lected a classical item-recognition task to study work-
ing memory (WM) (Sternberg, 1966), and varied three
173
experimental scales independently: the delay length
over which information had to be maintained in mem-
ory (a continuous variable), memory load (a discrete
variable), and a hit/foil manipulation (a binary vari-
able).

It appears useful to briefly review recent results
from functional imaging studies in WM (for a review,
see (Smith et al., 1998)), which suggest a rough neural
architecture of verbal WM. The system may involve at
least three components (Goldman-Rakic and Fried-
man, 1991): (1) a phonological rehearsal component
mediated by left-hemisphere frontal speech regions,
including BA 44 and the inferior and superior aspects
of BA 6 (Awh et al., 1996; Paulesu et al., 1993), (2) a
storage buffer mediated by left superior parietal cortex
(BA 40) (Awh et al., 1996; Paulesu et al., 1993), and (3)
xecutive components mediated by the dorsolateral
refrontal cortex (PFC, BA 9/46) (D’Esposito et al.,
995; Rypma et al., 1999a), which was active in the
-back memory conditions and may reflect the need to
emporally code the items in these conditions. Increas-
ng the memory load in a item-recognition task (Rypma
t al., 1999a; Rypma and D’Esposito, 1999b) led to an
nhanced activation in the inferior frontal gyrus (bilat-
ral BA 44/45) and activation of additional dorsal PFC
bilateral BA 8, 9, 46, and 10). Variation of the delay
ength over which information had to be maintained
ed to an increased activity of the left middle frontal
yrus (BA 9), left inferior frontal gyrus (BA 44), and
he left superior parietal lobule (Barch et al., 1997).

Most of these previous studies were conducted as
locked experiments and thus limited to incorporating
nly a few different experimental conditions, either in
emory load (e.g., Braver et al., 1997; Cohen et al.,

997; Rypma et al., 1999a) or in delay time (Awh et al.,
1996; Barch et al., 1997). Two issues are still contro-
ersial: (1) Does the activation amount (linearly) in-
rease with memory load in the dorsolateral and ven-
rolateral PFC (Braver et al., 1997) or are additional

areas in the dorsolateral PFC switched on in high-load
conditions (Rypma et al., 1999a)? (2) Is there a delay-

related activation increase in the dorsolateral PFC
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174 KRUGGEL, ZYSSET, AND VON CRAMON
(Barch et al., 1997) or a sustained activation (Cohen et
l., 1997; Courtney et al., 1997)? In addition, we were
nterested how much differences in behavioral reaction
imes between conditions were reflected in the time
ourse of the HR.

Event-related experimental designs allow a highly
ariable, randomized presentation of stimuli using or-
hogonal variations of memory load and delay interval.
xperimental manipulations from a series of previous
tudies were combined in a single design here. Model-
ng the observed HR time course yields quantitative
arameters of the brain’s response to a given stimulus.
or each activated region, estimates related to the
ctivation amount (called “gain” here), the time-to-
aximum (“lag”) and the activation duration (“disper-

ion”) are obtained for both cue and probe phases of an
tem recognition task. By relating these HR shape pa-
ameters to stimulation parameters a better under-
tanding of the brain’s network involved in human
orking memory may be achieved. Translating the
uestions posed above into this framework: (1) Does an
ncreasing memory load lead to a (linear) increase in
he activation amount (i.e., the gain) of prefrontal ar-
as? (2) Does an increasing delay time lead to an in-
reasing gain of the probe phase? (3) It is possible to
elate behavioral reaction times to the lag of the probe
hase?
The present study was performed to demonstrate the

dvantages of linking a highly variable experimental
esign with a fine-grained analysis of the hemody-
amic response observed in fMRI and thereby tries to
ontribute to the understanding of WM function.

METHODS

ubjects

Seven right-handed subjects (ages 21–24) were re-
ruited from the undergraduated campuses of the Uni-
ersity of Leipzig. Subjects were excluded if they had
ny medical, neurological, or psychiatric illness or if
hey were taken any type of prescribed mediation. All
ubjects gave informed consent. All subjects were pre-
rained to assure familiarity with the task prior to
canning.

ehavioral Task

Subjects performed an item-recognition task (Stern-
erg, 1966). The task included a series of discrete tri-
ls. Each trial consisted of a list of uppercase target (3,
, 5, or 6) letters, presented simultaneously for 2 s,
ollowed by a variable blank delay period (2.0 s, 3.2 s,
.1 s, 5.2 s, 6.2 s, 7.0 s), during which subjects had to
emember the letters. After this delay a probe letter
as displayed for 1 s. Subjects were asked to respond if
he probe letter belonged to the previously presented
list (“hit” condition: button press with their right index
finger) or not (“foil” condition: button press with their
right middle finger). A variable intertrial interval fol-
lowed to complete a single trial of a constant duration
of 18 s. Forty-eight trial combinations (4 (set sizes) 3 6
(delay length) 3 2 (hit/foil manipulation)) were pre-
sented randomly in a single run. Five subjects com-
pleted four runs, the other two completed three runs.

MRI Technique

Imaging was carried out on a 3.0 T Bruker Medspec
100 scanner (Bruker GmbH, Karlsruhe, Germany)
equipped with a fast gradient system for echo planar
imaging. A birdcage radiofrequency coil was used as a
receiver. High-resolution axial T1-weighted images
were obtained in every subject. A gradient-echo, single-
shot, echo-planar sequence (TR 5 1000 ms, TE 5 40
ms) was used to acquire data sensitive to the blood-
oxygen level dependent effect. Eight slices parallel to
the AC-PC plane were recorded at a resolution of 3.8 3
3.8 3 5 mm with a 3-mm gap between slices. Subjects
view a backlit projection screen from within the scan-
ner tunnel through a set of mirror glasses.

Data Analysis

Off-line data analysis was carried out on a SGI Ori-
gin 2000 (Silicon Graphics, Mountain View, CA) using
the BRIAN software system (Kruggel and Lohmann,
1996). Data analysis consisted of a series of steps:
preprocessing, activation detection using voxel-wise
linear regression, selective averaging of HRs in re-
gions-of-interest (ROIs), and shape analysis of the he-
modynamic response by nonlinear regression. These
steps are now described in detail.

A standard preprocessing scheme was applied to the
raw fMRI datasets (Kruggel et al., 1998): In subse-
quent MR scans of a subject, MRI data at the same
anatomical position may be subjected to a different
intensity scaling during the signal collection and trans-
formation steps. Data were linearly rescaled to achieve
the same mean intensity across scans, and scans were
concatenated to yield a single 3-D data set, where two
dimensions correspond to the image plane, the third
dimension to time. Small body movements were cor-
rected by registering images in the time series using
two translational and one rotational parameter. To
correct for slow fluctuations of the baseline intensity,
the baseline was estimated using voxel-wise low-pass
filtering in the temporal domain with a cutoff fre-
quency of 1.5 times of the trial length (0.037 Hz). The
estimated baseline was subtracted from the original
data. To reduce the amount of high-frequency compo-
nents of physiological and system noise, data were
finally low-pass filtered in the temporal domain using a
cutoff frequency of 0.38 times of the trial length (0.26

Hz).
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175NONLINEAR REGRESSION OF fMRI DATA
The next step consisted of the detection of activated
areas in the brain using linear regression analysis.
Regressors corresponding to the cue, delay, and probe
phase were constructed (see Fig. 1) to ensure orthogo-
nality: time steps 0–1 were coded as baseline, steps
4–6 as activated for the cue regressor, steps 9–(5 1
delay time) as activated for the delay regressor, and
steps (6 1 delay time)–(7 1 delay time) as activated for
the probe regressor. Two time steps around the cue
phase (2–3, 7–8) and two steps following the probe
phase ((8 1 delay time)–(9 1 delay time)) were ex-

FIG. 1. Stimulation scheme (top): during the cue phase, a set of
etters was presented for 2 s, followed by a variable delay time,
ollowed by presentation of a single letter (probe phase) for 1 s. The
ength of an experimental trial was fixed at 18 s. The corresponding
egressors for the three phases and an example delay time of 5 s are

shown below. Each entry corresponds to an interval of 1 s, for which
a set of fMRI slices was obtained. Entries marked as 0 correspond to
baseline, 1 to activated state, X were excluded from evaluation.
Regressors were shifted in time by 5.5 s in order to take the lag of the
hemodynamic response into account.

TAB

Talairach Coordinates of ROIs and Their Par
as Measured by the Average z Sco

ROI Anatomical site

MFGL Left middle frontal gyrus
IPSL (Banks) of the left inferior precentral s
IPSR (Banks) of the right inferior precentra
SIPL (Banks) of the left sulcus intraparietal
SPCR Right superior parietal cortex
preSMA Pre-supplementary motor area
MCL Left motor cortex

ROI

Average z score

Cue Delay Probe

MFGL 11.65 7.82 8.42
IPSL 16.99 11.52 10.42
IPSR 14.48 2.64 4.11
SIPL 14.32 5.34 10.83
SPCR 13.64 0.71 4.63
preSMA 13.67 5.80 10.61
MCL 3.74 2.76 14.14

Note. Regression coefficients for each phase were divided by the
column lists the relative activation of ROIs during the three phases (

C . D” denotes significant greater activation during the cue vs the de
cluded. Any remaining time steps were coded as base-
line. Functional activation was detected by performing
voxel-wise multivariate regression with these regres-
sors (Rajapakse et al., 1998), conversion of the F values
into z scores, while taking temporal autocorrelations
into account (Rajapakse et al., 1998), thresholding of
the corresponding z score map by a threshold of 3, and
assessment of the activated regions for their signifi-
cance on the basis of their spatial extent (Friston et al.,
1994).

To study the time course quantitatively in the sub-
ject group, we defined regions-of-interest (ROIs) as the
six most highly activated 4-connected voxels around
local maxima in the individual z score maps. We se-
lected 7 ROIs that were found at homologous anatom-
ical sites in at least 5 of the 7 subjects incorporated in
this study. ROIs at their prototypical locations are
shown in Fig. 3 and listed in Table 1.

Selective averaging (Dale and Buckner, 1997) was
used to visualize the temporal properties of the HR
time course in different ROIs. We formed averages
within ROIs defined above and across all trials of the
same delay time manipulations.

To describe HR shape properties quantitatively with
respect to stimulation parameters, we used a nonlinear
regression analysis (Seber and Wild, 1989). This model
was described elsewhere (Kruggel and von Cramon,
1999a), so we deliberately keep the discussion short
here.

1

ipation in the Cue, Delay, and Probe Phase,
within ROIs and across Subjects

Brodmann area
Talairach

coordinates

BA 6/44 243 40 28
us BA 6/44 245 2 28
lcus BA 1/2/3 45 2 28

BA 9/46 240 255 28
BA 5 22 270 36
BA 6 2 3 23 50
BA 4 228 230 50

Regression coefficients

Comparisonue Delay Probe

.40 0.31 0.28 C 5 D 5 P, C 5 P

.45 0.29 0.24 C . D 5 P, C . P

.77 0.07 0.14 C . D 5 P, C . P

.50 0.13 0.35 C . D , P, C . P

.77 0.02 0.20 C . D , P, C . P

.43 0.17 0.38 C . D , P, C . P

.10 0.09 0.79 C 5 D , P, C , P

of all three coefficients (see Fig. 3 for an example map). The last
le sided t tests of individual z scores, equal variance, P , 0.05), e.g.,
LE
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176 KRUGGEL, ZYSSET, AND VON CRAMON
We consider acquired functional data y, collected at
k 5 6 voxel sites of predefined ROIs throughout l 5 18
time steps of m 5 {144, 192} trials. Functional data are
modeled as a sum of a deterministic function g[ and a
stochastic part e:

y 5 g~t, b! 1 e, (1)

where t corresponds to the discrete time steps and b to
he p-dimensional vector of model parameters. For this
xperiment, g[ corresponds to a sum of three Gauss-
an functions, one for each experimental phase (cue,
elay, and probe):

g~t, b! 5 b0expF2
~t 2 b2!

2

2b 1
2 G

1 b3expF2
~t 2 b5!

2

2b 4
2 G 1 b6expF2

~t 2 b7!
2

2b 8
2 G . (2)

We denote the p 5 9 components of b as b{0,3,6}: gain (the
“height” of both HRs), b{1,4,7}: dispersion (proportional to
the duration of the HRs), b{2,5,8}: lag (the time delay
from stimulation onset to the HR maximum). Note that
parameters b are functions of the stimulation param-
eters of a given trial.

We assume that the stochastic part is independent of
the signal and stationary with respect to time, and its
elements are normally distributed with a nonsingular
covariance matrix V: e ; Nn(0, V), where n 5 k p l p m
corresponds to the number of data points. For reasons
of simplicity, we set V 5 I in this study. A more ad-
vanced formulation may incorporate AR(1) autocorre-
lation in time and space (Kruggel and von Cramon,
1999a).

We find the ML estimate b̂ of our model parameters
s the vector b that minimizes the quantity:

arg min
b

~e TV 21e!, where e 5 y 2 g~t, b!. (3)

his nonlinear minimization problem was solved using
owell’s algorithm (Press et al., 1992).
Using a first-order linear model, we can derive con-

dence limits for the estimation from the inverse of the
isher information matrix F:

b̂ , N~b, F b
21!, where Fb 5 GbV 21G b

T, (4)

nd Gb denotes the Jacobian matrix of g[ with respect
to b. A simple measure for the goodness-of-fit (GOF) is

iven by:
GOF 5 1 2
e TV 21e

y TV 21y
, with GOF [ @0, 1# (5)

nd 1 denoting a perfect fit. A more complex measure is
iven for the F statistics (Seber and Wild, 1989):

Fp,n2p ,
~n 2 p!

p

e TPe

e T~In 2 P!e
, using P 5 GbF b

21G b
T,

(6)

where n corresponds to the number of data points, p to
the number of parameters, and In is the (n, n) identity
matrix.

RESULTS

Behavioral Data

Reaction times (relative to the probe phase) and re-
sponses were recorded along with the stimulation. Re-
sults for all subjects were pooled, incorrect (N 5 34)
nd missed (N 5 20) responses were excluded from a
otal of N 5 1244 trials (4.3%). No significant differ-
nces in the rate of incorrect or missed responses were
ound between subjects and experimental conditions.
sing multivariate linear regression, the reaction time

RT) intercept was found at 835 6 47 ms, with a RT
ncrease per set item of 34.8 6 7.9 ms and a RT de-

crease per second delay time of 215.9 6 5.2 ms (R2 5
0.027, P , 0.001). Hits were 248.0 6 17.9 ms faster
than foils (P , 0.01). RTs were independent from the
experimental time (trial number). RT slopes with set
size varied considerably between subjects (see Fig. 2).

FIG. 2. Differences in individual RT slopes are found in inter-
cept-normalized reaction times.
To better compare between the individual RT slopes, a
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linear regression RT vs set size was computed for each
subject. The individual intercept of the regression line
was subtracted from the RTs, which were averaged
within a given subject and experimental set size con-
dition.

fMRI Data Analysis

Prototypical results from linear regression analysis
are shown in Fig. 3, and anatomical sites of selected
ROIs are compiled in Table 1. In order to determine the

FIG. 3. Univariate regression analysis in a sample subject: signifi
row), and probe phase (3rd row). In the bottom row, properties of RO
cue phase only; blue, probe phase only; yellow, cue and probe phase
relative contribution of ROIs during the three experi-
mental phases, z scores within individual ROIs were
compared between phases using t tests (single-sided,
equal variance, P , 0.05). Four different patterns were
observed: ROIs contributing predominantly either to
the cue phase (IPSR) or to the probe phase (MCL), ROIs
contributing to the cue and probe phases (SIPL, SPCR,
preSMA), while ROIs MFGL and IPSL were active in all
three phases.

Selective averaging of HRs obtained under the same
delay time manipulation confirmed that all ROIs ex-
hibit two peaks in their time course (see Fig. 4 for an

tly activated regions related to the cue phase (top), delay phase (2nd
from Table 2 were color-coded by their amount of contribution (red,
reen, all three phases).
can
Is

s; g
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178 KRUGGEL, ZYSSET, AND VON CRAMON
example result). All regions were active during the cue
and probe phase, although the activation amount in
both phases differed from region to region and corre-
sponded to the results from regression analysis com-
piled in Table 1. Due to the smoothness of the HR, all
activations overlapped strongly for delay times of less
than 4 s. The least decrease during the delay phase
was found for ROI MFGL (see Fig. 4).

To perform a quantitative analysis of the HR shape

FIG. 4. Averaged time courses of the hemodynamic response
from a sample subject for ROIs defined in Table 1, selected from
trials of the same delay time. All regions were active in both phases
of a trial.
with respect to the stimulation conditions, functional t

Note. See Table 3 for obtained parameter values.
models were adapted to the HR in the selected ROIs
using nonlinear regression analysis. Different models
were tested for the dependency of b on the stimulation
parameters: The most simple model used independent
gains (b0, b6) for cue and probe phases, a fixed disper-
sion (b1 5 b7 5 1.8 s), and a lag time of the second
phase, which followed the first one by the delay time
manipulation d plus 2 s for the duration of the first
stimulation phase: b8 5 b2 1 d 1 2 s. This model
resulted in GOF values (see Eq. (5)) of 0.45–0.60 for all
ROIs in all subjects. Trials were excluded if subjects
failed to respond or gross artifacts disturbed the HR
time course. About 10–15% of the trials were rejected.
Using the fitted parameters as starting values, we
successively refined this model by introducing addi-
tional dependencies on the stimulation parameters.
Best fits, as given by GOF values, were found for a
10-parameter model, which is explained in detail in
Table 2.

As pointed out previously (Rosen et al., 1998; Krug-
el and von Cramon, 1999b), interindividual differ-
nces of the HR parameters were much higher than
ithin-subject variances. For homologue regions of dif-

erent subjects, the activation amount varied up to a
actor of 4 and lag times up to 3 s. Thus, the nonlinear

odel was computed for each subject separately, and
arameters were then averaged across the group. Re-
ults are shown in Table 3a. A set of interesting ratios
f these parameters were formed in order to abstract
rom the absolute values and thus to allow a better
omparison between ROIs (see Table 3b). In addition,
he influence of the experimental stimulation condi-

ions on the HR shape parameters bi was analyzed by
TABLE 2

Best Fitting Nonlinear Model of the Hemodynamic Response and Its Dependency
on Experimental Parameters in the Item-Recognition Task Studied Here

The hemodynamic response was modeled in each trial using the following function:

g~t, b! 5 b0expF2
~t 2 b2!

2

2b 1
2 G 1 b3expF2

~t 2 b5!
2

2b 4
2 G 1 b6expF2

~t 2 b7!
2

2b 8
2 G , (7)

where the parameters bi depend on experimental parameters in the following way:
b0: the gain of the first response had a constant part, but depended on the trial number t (i.e., the experiment duration) and the set

size s: b0 5 a0 1 a1 p t 1 a2 p s.
b1: the dispersion of the first response had a constant part, but is due to a slope limit of the HR, dependent on the gain of the first

response. This slope limit was determined heuristically and held fixed: b1 5 1.8 1 0.050 p b0.
b2: the lag of the first response had a constant part, but depended on the set size: b2 5 a3 1 a4 p s.
b3: the gain of the delay phase response is constant: b3 5 a5.
b4: the dispersion of the delay phase response had a constant part, but depended on the gain: b4 5 1.8 1 0.050 p b3.
b5: the lag of the delay phase response had a constant part, but depended on the delay time: b5 5 a3 1 a4 p s 1 d/2 1 2.
b6: the gain of the second response had a constant part, but depended on the trial number and the delay time d:

b6 5 a6 1 a1 p t 1 a7 p d.
b7: the dispersion of the second response had a constant part, but depended on the gain of the second response: b7 5 1.8 1 0.050 p b0.
b8: the lag of the second response had a constant part, but depended on the delay time, the set size and the hit/foil manipulation h:

b8 5 a0 1 d 1 2 1 a8 p s 1 a9 p h.
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179NONLINEAR REGRESSION OF fMRI DATA
computing linear regression models using group-
pooled data. Results were summarized as:

• As a first approximation, all ROIs were equally
active during the cue and probe phase of a trial (Table
3a, parameters a0, a6, and Table 3b, rows 1 and 3). In
accordance with results from linear regression, a con-
siderable delay period activation was found in ROIs
MFGL, IPSL, and preSMA (Table 3b, row 2).

• The cue phase response depended on the set size
manipulation only. The highest relative gain increase
per set item (Table 3b, row 4) was found for ROIs
MFGL (26%), a moderate increase for ROIs SMAL,
PSL, IPSR, SIPL (' 20%), and a rather small increase
or ROIs SPCR and MCL (' 10%). This set size-depen-

dent effect leads to a more profound activation of the
whole frontoparietal network involved in this task dur-
ing the cue phase (Table 3b, row 1 vs 5). For high
memory load conditions, cue phase activations are
stronger than the probe phase activations (Table 3b,
row 3 vs 5).

Individual differences are further illustrated in Fig.
5, where the cue phase gain (parameter b1) is compared

TAB

Absolute Parameter Values ai of the Model
to the Experimental

Parameter MFGL IPSL IPSR

a0 55.8 77.2 88.0
a1 20.1383 20.1377 20.269
a2 14.61 16.07 14.68
a3 3.52 3.41 2.98
a4 0.3473 0.345 0.317
a5 22.7 14.59 5.44
a6 97.4 94.7 86.0
a7 3.25 3.314 5.20
a8 0.1486 0.1341 0.239
a9 20.353 20.0674 20.1489
GOF 0.707 0.777 0.728

Ratio MFGL IPSL

1 Rel. cue phase activation for 0
items: a0/(a0 1 a5 1 a6)

0.317 0.414

Rel. delay phase activation:
a5/(a0 1 a5 1 a6)

0.129 0.078

Rel. probe phase activation:
a6/(a0 1 a5 1 a6)

0.554 0.508

Cue phase activation increase per
item (%): a2/a0

26.1 20.8

5 Rel. cue phase activation for 6
items: a0/(a0 1 6 p a2 1 a5 1 a6)

0.816 0.931

Probe phase activation increase
per s delay time (%): a7/a6

3.3 3.4

7 Activation reduction with time (%):
(a1 p 196 p 2)/(a0 1 a6)

35.4 31.4

Note. Between 66 and 78% of the variance was explained by this mo
or a further explanation, refer to Results.
with the set size for ROIs MFGL and IPSL.
The lag of the first response also increases with set
size (a4, 1296 6 124 ms per set item, on average across
ll subjects and ROIs): due to slope limits of the HR, a
igher gain results in a later time-to-maximum.

• The gain of the probe phase response (see Tables
a, a5) was independent of the set size, but increased

slightly with increasing delay time (see Table 3a, a6

and Table 3b, row 6), which might be addressed to a
“reactivation effect.”

• An increasing set size led to a slightly higher lag of
the probe response (Table 3a, a8, 1160 6 78 ms on
average), which is in the order of the reaction time
differences found for the behavioral evaluation. In Fig.
6a, lag time slopes vs set size were shown for ROI
MFGL of different individuals.

Lags of the probe response for hits were slightly
faster than for foils (Table 3a, a9, 2141 6 125 ms on
average), which was in accordance with the behavioral
results. The difference is high in ROIs MFGL (see Fig.
6b) and MCL.

• All activations decrease with experiment time

3

scribed in Table 2 (top) and Ratios Related
anipulation (below)

SIPL SPCR preSMA MCL

60.8 92.4 63.3 78.6
20.0979 20.0746 20.1715 20.132
12.35 10.37 14.254 4.92
3.98 3.54 3.54 3.09
0.304 0.360 0.205 0.362
8.28 6.08 21.3 3.94

97.6 83.6 133.9 119.0
1.520 2.37 1.69 4.14
0.1240 0.286 0.0534 0.1345

20.1112 20.0828 0.0251 20.246
0.741 0.720 0.661 0.758

IPSR SIPL SPCR preSMA MCL

0.490 0.365 0.507 0.290 0.390

0.030 0.050 0.033 0.097 0.020

0.479 0.586 0.459 0.613 0.590

16.7 20.3 11.2 22.5 6.26

0.981 0.809 0.849 0.681 0.536

6.0 1.55 2.83 1.262 3.47

60.6 24.2 16.6 34.0 26.2

, and all fits were assigned as significant according to the F statistics.
LE

De
M

del
(i.e., per trial number, Table 3a, a1). Gains reduced
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considerably in some ROIs from the first to the last
trial of the experiment (see Fig. 7 for cue phase re-
sponses of ROIs MFGL, IPSL). Across the group, a
reduction of '30% was found (Table 3b, row 7), but in
some ROIs of specific subjects, the reduction reached
80%.

It should be noted that time differences as given in
the results section adhere to the “hemodynamic time
scale.” In comparison with RT differences from the
behavioral results these hemodynamic time differ-
ences are longer, although a proportional relation-
ship holds as a first-order approximation (see Fig. 8).
The gain of the probe phase response did not show a
significant dependency on the reaction time (P 5

FIG. 5. The gain of the cue phase response (b1) increased with set
size in ROI IPSL (top, 116.4 units/item, R2 5 0.033, P , 0.02) and
MFGL (below, 18.8 units/item, R2 5 0.020, P , 0.03). Data were
pooled per subject and each line represents an individual subject.
0.139). r
DISCUSSION

This fMRI study demonstrated the combination of a
highly flexible single-trial experimental design with a
two-step data analysis using multivariate linear re-
gression to locate functional activation related to the
task and a nonlinear regression model to quantify the
dependency of the HR shape on the experimental stim-
ulation parameters. An item-recognition task was
studied as an example paradigm.

This task studied requires two distinguishable
groups of processes: During the cue phase and the
delay period, letters need to be perceived and re-
hearsed. The onset of these processes are fixed in time
but variable in duration (delay length) and load (set
size). During the probe phase, WM contents had to be
compared with the probe item, a response selected and

FIG. 6. The relative lag of the probe phase response (b8 2 b2 2
t) increased slightly with set size in ROI MFGL (top, 185 ms/item,
R2 5 0.034, P , 0.03) and increased for foil items (below, 1320 ms,

2 5 0.034, P , 0.01). Data were pooled per subject and each line

epresents an individual subject.
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executed. The onset of these processes are temporally
variable, only the matching process is load-dependent.

In order to study these processes, three experimental
scales were varied independently: the delay length (a
continuous variable), memory load (a discrete vari-
able), and the hit/foil manipulation (a binary variable).
Nonlinear regression served to quantify HR shape
properties in terms of gain (activation amount), lag
(time to HR maximum), and their dependency on pa-
rameters of the experimental stimulation.

A fronto (ROIs MFGL, IPSL, IPSR, preSMA)-parietal
(ROIs SIPL, SPCR) network was found to be involved
during the cue and probe phase (Table 1 and Fig. 2),
which is qualitatively well in accordance with recent
studies of verbal working memory by positron emission
tomography (Awh et al., 1996; Paulesu et al., 1993;

etrides et al., 1993) and fMRI (Barch et al., 1997;

FIG. 7. The gain of the cue phase response (b1) decreased during
the experiment in ROI MFGL (top, 20.261 units/trial, R2 5 0.044,
P , 1e 2 11) and IPSL (below, 20.294 units/trial, R2 5 0.048, P ,
e 2 9). Data were pooled from all subjects and all experimental

conditions.
raver et al., 1997; Cohen et al., 1994, 1997; Courtney
t al., 1998; D’Esposito et al., 1998; D’Esposito et al.,
999; Rypma et al., 1999a; Rypma and D’Esposito,
999b).
Quantification revealed that the cue phase activa-

ions depended on the set size manipulation only. In
ontrast to a recent event-related fMRI study by
ypma and D’Esposito (1999b), a load-dependent effect
as found for the whole frontoparietal network during

he cue phase. For subspan set sizes, an approximately
inear gain increase with memory load was found (see
ig. 5 and Table 3), which was most notably in ROI
FGL. Addressing the first question raised in the in-

roduction, regional differences of this gain increase
ay explain differences in the activation pattern found

n previous studies: in conventional statistics, the ac-
ivation of certain regions (e.g., MFGL) may be rated as

subliminal for small set sizes and appear as “switched
on” for larger sets (Table 3, row 1 vs 5). ROIs IPSL and
IPSR were predominantly active during the cue phase,
underlining their role in the encoding process.

As previously reported by Cohen et al. (1997) and
Courtney et al. (1998), ROIs MFGL, IPSL, and preSMA
showed significant activation during the delay phase
(Table 3, row 2), which suggests involvement of these
regions in maintaining information.

Probe phase responses showed a slight delay-depen-
dent gain increase, which was most pronounced in
ROIs IPSR (6.0%), IPSL, and MFGL, confirming reports
by Barch et al. (1997). Probe phase responses were
independent of memory load in terms of activation
amount, but showed a slight increase in lag times (e.g.,
Fig. 7a), which were comparable with RTs recorded
alongside. This lag time dependency was most notably
in ROIs MFGL (maintaining the information), SPCR

FIG. 8. The relative lag of the probe phase response (b8 2 b2 2
t) in relation to the measured reaction time for ROI MFGL (lag 5
20.66 s 1 1.465 p rt, R2 5 0.040, P , 5e 2 8). Data were pooled from
ll subjects.
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(determination of familiarity), and preSMA (response
selection). Responses in these areas were faster for hits
than for foils (e.g., Fig. 7b), again with lag differences
similar to RT data.

Three presumably general findings revealed by this
quantitative analysis need to be emphasized:

• All activations decreased with experiment time.
This effect differed by ROI and subject, but led to a
gain reduction of up to 80% in some ROIs. Because
similar decreases were found in other experiments as
well (Kruggel and von Cramon, 1999a; Kruggel and
von Cramon, 1999b), experimental time should be in-
cluded as a covariate on the activation amount in quan-
titative analysis of fMRI data. Because no dependency
of RTs on experimental time was found, this observa-
tion may be interpreted as a more efficient cortical
processing requiring less neuronal space (but not nec-
essarily less time), thus leading to a less profound
BOLD effect.

• Because the HR slope is rate-limited, there is an
influence of the gain on the dispersion: a stronger ac-
tivation needs longer to return to base-level. Thus, the
HR gain should be included as a covariate of the HR
dispersion.

• As in previous studies (Kruggel and von Cramon,
1999b), we found interindividual differences in lag
times of up to 3 s. We consider this finding as an
argument against group-averaging fMRI data if tem-
poral properties of the HR are of interest. Instead, we
propose to extract HR shape parameters from individ-
ual fMRI data and to study (pooled) lag times for dif-
ferences relative to the experimental stimulation.

• It is possible to relate changes in behavioral reac-
tion times with lag time differences induced by the
experimental stimulation. More specifically, an aver-
age RT increase per set item of 34.8 ms corresponded to
a lag increase of 160 ms. Hits were 248.0 ms faster
than foils in RT and 2141 ms faster in lag times. No
uch relation was found between the RTs and the HR
ain.

In principle, this quantitative nonlinear regression
nalysis may be applied post hoc to any event-related
MRI study. However, to gain the best profit from such
n analysis, the following facts should be remembered
hen designing the fMRI experiment: (1) The HR dis-
ersion s is typically found between 2.2 and 2.8 s.
hus, two stimuli need to be separated by at least 4–5
(' 2s) to be detected as separate peaks (see also Fig.
). To ensure that consecutive trials overlap by less
hat 10% in intensity, a minimum trial length of 12 s is
dvisable (' 4s). (2) The more parameters are intro-
uced in a HR model function, the closer it may fit the
R. In contrast, model functions with few parameters
re more robust against noise and show a better opti-
ization behavior in the fitting process. As a rough
ompromise, the ratio of data points recorded during
an experimental trial and parameters of the HR mod-
eling function should be at least two. Here, we recorded
at 18 time points per trial and modeled HRs by a
6-parameter function. (3) HR modeling allows resolv-
ing temporal events at a higher scale than the image
repetition time TR. If N trials were conducted, a tem-

oral resolution of Dt 5 TR/=(N 2 1) may be achieved
and reach statistical significance. In this study, 196
trials and a TR 5 1.0 s allowed for a maximum reso-
lution of 71 ms.

We regard the combination of a highly flexible exper-
imental design with a quantitative analysis by model-
ing the HR shape as an important advance for conduct-
ing fMRI studies:

• Meaningful results were achieved from only 3–4
repetitions of a given stimulus condition. This is a
desired feature for cognitive experiments, where the
similarity of repeated stimuli is of concern. It is possi-
ble to conduct experiments with true parametric vari-
ations of each variable, which closer resembles the
design of behavioral experiments.

• Using individual ROIs as a basis for data analysis
may appear tedious at a first glance. However, individ-
ual differences in the behavioral results, the HR prop-
erties and the cortical organization are well known and
suggest to conduct the analysis on an individual level
as far as possible. Because HR shape properties are
obtained in parametric form, pooling within groups is
easily possible, as shown in the results section.

• In comparison with the event-related analysis
method described by Dale and Buckner (1997) this
approach yields quantitative parameters that describe
the HR shape. This approach makes the HR gain, lag,
and dispersion accessible to statistical analysis. While
the activation amount is obtained from classical linear
regression analysis as well, stable and reliable quanti-
tative estimates of temporal HR properties are not
easily obtained by other methods. Brain activations
may be understood in terms of activation amount
(gain), duration (dispersion), and temporal order (lag).
Their parametric estimates allow relating relative
changes of the activation amount and HR time course
to the stimulation parameters and behavioral reaction
times. Our Gaussian shape model for the HR is related
to the “impulse response function” introduced for ana-
lyzing event-related fMRI data by Zarahn et al. (1997).
In contrast, our estimation model allows for parametric
shape variations and yields quantitative estimates on
a per-trial basis.

• A well thoughtout setup of the model equations for
nonlinear regression (e.g., Table 2) is crucial for a suc-
cessful data analysis. Knowledge about the experimen-
tal design in the form of relevant stimulation condi-
tions is expressed here. Presumably general effects like
optimization and habituation may be tested for and

taken into account. Mutual dependencies of gain, lag
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and dispersion, which result from physiological con-
straints of the neuronovascular coupling, are easily
incorporated in such a model.

• Model results are obtained in the form of regres-
sion coefficients along a specific model axis (i.e., mem-
ory load, experimental time). Thus, results are based
on the whole data set, and not on discrete comparisons
between several experimental conditions as in more
conventional designs, where analytic procedures may
incorporate only subsets of the experimental data. A
benefit in the form of smaller variances (or catching
smaller effects) is expected.

The approach presented here achieves a much finer
lever of description of a fMRI experiments and opens
new perspectives for conducting fMRI experiments in
cognitive neuroscience.
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