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Abstract 

In. this paper: we compare the performance of three 
typical and widely used optimization techniques for  
a specific M E G  source localization problem. Firstly, 
we introduce a hybrid algorithm by combining genetic 
and local search strategies t o  overcome disadvantages 
of conventional genetic algorithms. Secondly, we ap- 
ply the tabu search. a widely used optimization meth- 
ods in combinational optimization and discrete math- 
ematics: to  source localization. To the best of our 
knowledge, this is the first attempt an the literature to  
apply tabu search to  M E G / E E G  source localization. 
Thirdly, in order to further  comparison of the per- 
formance of above algorithms, simulated annealing is  
also applied t o  M E G  source localization problem. The 
computer simulation results show that our local ge- 
netic algorithm is the most  effective approach to  dipole 
location. 

Keywords: Magnetoencephalography (MEG), 
dipoles, global optimization, genetic algorithms, sim- 
ulated annealing, tabu search. 

1 Introduction 

Measurements of the magnetoencephalography 
(MEG) as well as the electroencephalography (EEG) 
provide unique insights into the dynamic behavior of 
the human brain as they are able to follow changes 
in neural activity on a millisecond time-scale [5]. In 
comparison, the other functional imaging modal- 
ities (positron-tomography (PET) and functional 
magnetic resonance imaging (fMRI)) are limited in 
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temporal resolution to time scales on the order of, 
at best, lOOms by physiological and signal-to-noise 
considerations. In the study of ILIEG/EEG, we 
are confronted with the following inverse problem. 
Given magnetic field values a t  a limited number 
of measurement points, we have to reconstruct the 
sources generating these data. Generally, given a 
suitable source and head model, this inverse problem 
can be cast as a nonlinear optimization problem 
of computing the location and moment parameters 
of the set of dipoles whose field best matches the 
MEG measurements in a least squares sense [ l l ] .  
Mathematically, it is a very difficult nonlinear 
optimizatioii problem because its objective function 
is very complex and always has many local optima, 
especially when the number of dipole source is large. 
Figure 1 shows such an example. 

In order to solve this problem, various optimiza- 
tion techniques have been adopted. These opti- 
mization methods can loosely be classified into two 
groups: gradient based Newton-type methods such 
as Levenberg-Marquardt and gradient-free search 
methods such as the Nelder-Mead downhill simplex 
method. However, the gradient-based methods are 
problematic for this specific problem because they 
will easily be trapped by the local optima, which 
probably results in incorrect estimates of the dipole 
parameters. Though Nelder-Mead downhill simplex 
method is better than the Newton-type technique in 
escaping local optima, Khosla et al. [7] demonstrated 
that it is sensitive to starting parameter estimates 
and can also converge to a suboptimal local optimum. 
Therefore, conventional gradient based optimization 
methods and Nelder-Mead downhill simplex method 
are hardly suitable to MEG source localization. The 
key requirement to any global optimization method 
is that it must be able to escape in local minima and 
continue the search to give a near-optimal final so- 
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lution whatever the initial conditions. Simulated an- 
nealing (SA) and genetic algorithm (GA) meet this 
requirement, and majority of work along this stream 
focused on how to apply simulated annealing algo- 
rithm as an alternative to conventional gradient-based 
optimization methods. Unfortunately, K. Uutela et 
al. [12] have shown that for the dipole location, the 
performance of SA is the worst one among their cho- 
sen three types of global optimization. Besides GA 
and SA, several other global optimization techniques 
exist, the most popular in them is tabu search (TS) [3] .  
There are very few works for applying it to continuous 
problems [6]. It has also been shown that stimulated 
annealing is a special case of tabu search [3] .  A key 
feature of this algorithm is a tabu list included in the 
search process. This provides TS with some memory 
and endorses some intelligence to find the optimal so- 
lution. So it is reasonable to expect that TS should be 
superior to SA for the dipole localization. It remains 
natural to ask whether GA is the most effective algo- 
rithm. Moreover, in [la] only conventional GA was 
adopted, though some new features have been added 
to GA in its implementation. However, it has been 
shown that the conventional GA has a very poor local 
performance because of the random search of GA. 

Although a lot of different optimization methods 
exist, the efficacy of an optimization method is always 
problem specific. In this paper, we compare the per- 
formance of three typical and widely used optimiza- 
tion techniques for a specific MEG source localization 
problem. The computer simulation results show that 
our local genetic search algorithm is the most effective 
approach to dipole localization. 

The paper is organized as follows. Section 2 devotes 
to the formulation of the problem. In section 3, we 
give a detailed description of genetic algorithm, stim- 
ulated annealing, and tabu search and their imple- 
mentations. In Section 4, we describe the procedure 
of computer stimulation. Section 5 is experimental 
results. The final section is conclusion. 

2 MEG Source Imaging as an 
Inverse Problem 

Given a suitable source and head model, we want 
to reconstruct the sources from some given magnetic 
field values at limited number of measurement points. 
This inverse problem can be cast as the following least 
squares problem of estimating the location and mo- 
ment parameter of current dipoles [Ill.  

E(L, Q) = IIB - G(L)QII% (1) 

where B are current dipoles, L are location parame- 
ters, Q are dipole moments, G(L) is the gain matrix, 

and 1 )  I I F  indicates the Frobenius norm. We refer to 
[ll] for a detailed derivation of this formula. Thus the 
inverse problem is to find the set {L, Q} to minimize 
this error function. It is obvious that this is a nonlin- 
ear optimization problem. So we can only use some 
iterative optimization algorithm to solve it. Assum- 
ing that there exist N dipoles and k time points, then 
there will be 3N location parameter and 3Nk moment 
parameters, for an overall of 3N(k + 1) parameters. 
In practice, it is a very difficult optimization problem 
only due to its dimension. For example, if there are 
N = 3 dipoles and k = 80 time points, then we will 
have to search a 729 dimensional parameter space to 
find the global optima for this problem. 

Fortunately, the computational complexity of the 
problem can be greatly reduced by separating the 
linear and nonlinear parameters because B is lin- 
ear function of parameter Q. The method to fac- 
tor out the linear moments has been used by many 
researchers, say, [ll] and references therein, and 
has been mathematically justified in Golub et al. [2]. 
First, we assume that we know the locations L, then 
a solution for matrix Q that will minimize E ( L ,  Q) is 

Q = G*B (2) 

where G* is Moore-Penrose pseudo-inverse which can 
be found by G* = VC'UT, where G = UCVT is the 
singular value decomposition(SVD), and Cf is the 
inverse of C. Replacing Q with this pseudo-inverse 
solution before solving for L,  the cost function of the 
inverse problem then becomes 

E = IIB - GQlI; = IB - GG*B(($ = ( I  - GG*)B[[$ 

Now we can see the cost function depends only on the 
gain matrix G, which is a function of only 3N nonlin- 
ear location parameters. The number of parameters 
is reduced to 9 in the case of three dipoles. 

It has been shown by Mosher et al. [ll] that the 
computation process can be further simplified by us- 
ing some technique to compute I - GG', and the final 
results is as follows. 

(3) 

(4) 

where P& is projections which project the data 
into left null space of G. And supposing G = 
[UTVm-T]CV. For details, we refer to Mosher et 
al. [ l l ] .  

After finding the value of L using some nonlinear 
optimization technique, 3Nk moment parameters in 
Q can be estimated using equation (2). This is com- 
putationally cheap, because only the pseudo-inverse 
of G needs to be computed. 
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3 Optimization Methods 

In section 2, the problem of MEG source localiza- 
tion is addressed as an optimization problem. Once 
it is understood that MEG source localization is such 
an optimization problem, the use of any technique 
for tackling optimization problem suggests itself. In 
this section, we will introduce the genetic algorithm, 
stimulated annealing, and tabu search and then give 
details of our implementation to handle MEG source 
localization problem. 

3.1 Genetic Algorithm 

Genetic algorithms (GA) are capable of searching for 
global optimum in functions which cause difficulty for 
gradient based methods [4]. They have been success- 
fully applied to many nonlinear, multi-peak, continu- 
ous or combinatorial optimization problems. Prin- 
cipal advantages of GA are domain independence, 
non-linearity and robustness. Domain independence 
means that it is easy to write one general computer 
program for solving many different optimization prob- 
lems. GA does not require linearity, convexity, differ- 
entiability which are necessary for many conventional 
optimization techniques. The only requirement for 
GA is to calculate some objective function, which may 
be highly complicated and non-linear. The above two 
characteristics of GA assure that this method is in- 
herently robust. For details about GA, we refer to [4]. 

K. Uutela et al. [12] have applied GA to the prob- 
lem of MEG source location. They adopted the con- 
ventional GA though some properties of SA and c- 
means have been used for GA in their implementa- 
tion. However, conventional GA has a very poor local 
performance because of the random search of GA. To 
get a good solution, great computational costs are in- 
evitable. Improvements can be made in methodolog- 
ical decisions and parametric choices to enhance the 
performance of GA. In this paper, several remarkable 
features are added and some important extensions are 
also made to improve the performance of the conven- 
tional GA. 

(1) Hybrid Algorithm In many cases, hybridiz- 
ing GA with another heuristic can significantly en- 
hance the effectiveness of a GA [9]. Since GA has 
poor local search performance and conventional lo- 
cal search methods have remarkable ability in finding 
local optima, we propose a hybrid algorithm, which 
combines GA with a modified local search procedure. 
The local search is also applied to elite solutions in- 
herited from the previous populations. Some param- 
eters are introduced into the algorithm to control the 
local search. The parameter S t e p  is used to control 
the initial step of the search. The parameter E is used 

to  control the distance from the solution to its near- 
est local optimum. If we use a large value of S t e p  
and E ,  the local search will be fast and the computa- 
tional cost will be little though the solution will not 
be precise. This is designed at  the beginning of the 
algorithm. At the end of the optimization, a high 
precise solution is needed, we should set S t e p  and E 
to be small. 

(2) Elitist Strategy Two sets of solutions are 
stored in our algorithm: a current population and 
an elite set. After genetic operation and local search, 
the current population is replaced with the improved 
population and the elite set is updated from the new 
population. A local search procedure is applied to 
solutions in the elite set. By preserving good solu- 
tions, we can avoid losing some excellent solutions. It 
has been shown that only after one adopts the elitist 
strategy, the GA can mathematically converge to a 
global optimum [4]. In our algorithm, the parameter 
E l i t e R a t e  is used to control the number of the elite. 
A careful choice of E l i t e R a t e  is necessary in order to 
provide good convergence properties. Otherwise, one 
or two outstanding solutions will rapidly be dominant 
in the group and will lead to premature convergence 
of the algorithm. 

(3) Selection Operation and Crossover Oper- 
ation In our algorithm, we adopt the roulette wheel 
selection mechanism. The selection probability P ( x )  
in the current population @ can be expressed as: 
P(x )  = fX(z)/C,.afX(z), where f(z) is the fit- 
ness value of solution z and X is the parameter to 
control the scaling procedure of selection operation. 
Different values of X can make GA result in different 
solutions: when the value of X is large, the selection 
mechanism is strong and competition in the group is 
intense, some outstanding solutions in the population 
have greater chance to survive. However, the GA is 
easily trapped in a local optimum because one or two 
outstanding solutions in the group will be dominant 
in the population rapidly and the evolution will stop 
at a sub-optimal solution. Thus in the beginning of 
GA, we give X a small value to limit the competition, 
and we increase X in subsequent generations in order 
to stimulate the evolution. Another reason for us to 
adopt a scaling strategy is that the difference of the 
fitness value of different solutions may be very large 
for MEG source localization problem. 

(4) Parameters E l i t e R a t e ,  A, E ,  S t e p ,  and 
G e n e r a t i o n N u m b e r  in our algorithm The perfor- 
mance of the algorithm largely depends on the para- 
metric choice. In order to reduce the computational 
cost, simultaneously to keep the convergence to a 
global optimal solution, we have to carefully adjust 
the parameters in our algorithm in different stages of 
the algorithm. We divide the algorithm into three 
stages and adjust the parameters in each stage. To 
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ensure convergence to a global optimum, the competi- 
tion is limited early on, but it is stimulated later. The 
number of elite is limited at  the start and increased 
later. To reduce computational costs, parameters of 
the local search were optimized since the main com- 
putation is spend on local search. 

3.2 Simulated Annealing 

Simulated annealing (SA) is a stochastic simulation 
method originally proposed by Kirkpatrick et  al. [8]. 
It is a simple and robust algorithm and proved to 
be useful in wide range of complex combinatorial op- 
timization problems. The idea of SA mainly comes 
from the field of statistical mechanics. The process 
of annealing is analogous to the optimization process, 
in which the value of the cost function take the role 
of the energy of the system, and the global optimum 
corresponds to the energy of the ground state of the 
system. Metropolis et al. [lo] proposed a Monte 
Carlo method to simulate the evolution of the system 
for a fixed value of temperature T. If the system in 
energy state El is perturbed to another energy state 
E2, the new state is accepted with the probability 
exp(-AE/kT), where A E  = E2 - E l ,  that is to say 
when the perturbed state is of lower energy, it will 
always be accepted. When perturbed to a higher en- 
ergy state, the probability to accept the new energy 
state will depend on A E  a.nd T .  By repeating the 
basic step many times, the system will evolve into 
thermal equilibrium and the temperature is lowered. 
As temperature decreases, the probability of accept- 
ing uphill steps will decrease and the algorithm will 
eventually converge into a global optimum. We refer 
to [SI for the details about SA. 

Because of its outstanding performance in finding 
global optimal solution, SA has been implemented in 
different ways to MEG/EEG source localization prob- 
lem. Therefore, we will make a comprison of the per- 
formance of SA with others. 

3.3 Tabu Search 

Tabu search is effective for many optimization prob- 
lems 131. It is a meta-heuristic method that guides 
a local heuristic search procedure to explore the so- 
lution space beyond local optimality. It is different 
from the well-known hill-climbing local search tech- 
niques because the tabu search allows moves out of 
a current solution that makes the objective function 
worse in the hope that it eventually will achieve a 
better solution. It is also different from the simulated 
annealing and genetic algorithms because the tabu 
search includes a memory mechanism. 

Tabu search starts with a certain solution x,,,, 

followed by a certain set of candidate moves. A 
candidate set of moves Cand(lcnow) can be obtained 
from its neighborhood N(xnow).  Based on the history 
record of TS, some of the moves are tabu, some of the 
moves are permitted. Then the aspiration criteria is 
applied to the candidate set, and each solution in the 
set is evaluated based on its value of cost function 
c(z), the history record H ,  and the aspiration crite- 
ria. The best move in the set is selected to be the new 
solution xneZt .The procedure is repeated until some 
stop criteria is satisfied. 

To the best of our knowledge, this is the first at- 
tempt that tabu search is used to solve the MEG 
source localization problem. Conventional applica- 
tions of TS mostly focus on combinatorial optimiza- 
tion problems. However, the MEG/EEG source lo- 
calization problem is a continuous optimization prob- 
lem. In order to apply TS effectively to it, we have to 
carefully devise some strategies specific to this prob- 
lem. These strategies include the selection of suitable 
move attributes, specific intensification and diversi- 
fication strategies using recency-based memory and 
frequency-based memory, and some suitable aspira- 
tion criteria. 

4 Computer Simulations 

In order to find the relative merit of the proposed op- 
timization methods, we carefully devise some experi- 
ments and give some mathematical measure to com- 
pare performance of these algorithms. The perfor- 
mance of proposed algorithms was assessed and com- 
pared via a large number of computer simulations. In 
this section, we describe the procedure of our simula- 
tion in detail. 
4.1. Assumptions A current dipole model and 

a spherically symmetric conductor head model are 
adopted in our simulation. The human head is as- 
sumed to be a spherically symmetric conductor with 
an outer radius of 120 mm. The magnetic field data 
are measured by 17 evenly distributed sensors. Only 
the magnetic field component normal to the spheri- 
cal surface is measured, thus only magnetic fields due 
to the primary tangential dipole currents were com- 
puted, as we have discussed in Section 2. Our simu- 
lation can be easily extended to some more complex 
forward model. We should note is that the number 
and location of the detectors can significantly influ- 
ence the difficulty of source localization. 

In the simulation, three dipoles ( N  = 3) are as- 
sumed to generate magnetic data. Since the radial 
component of a current dipole does not generate a 
measurable magnetic field on a spherical surface, this 
component is neglected and only the location and 
two tangential components are considered. Two sets 
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of data which have different localization, orientation, 
and time course were used. Two cases are designed 
to evaluate the performance of these algorithms when 
the cost function is different. In Case 1, dipoles are 
separated by a large distance, while in Case 2 ,  they 
are close. The problem of escaping local optima is 
expected to be severe in Case 2. We assume that the 
three dipoles are all with k e d  location and orienta- 
tion. The dipole parameters are listed in TABLE I. A 
total of 20 time samples are generated in our simula- 
tion. The shape of the dipole time courses is assumed 
to be double-sided Gaussian function since physiolog- 
ically it is expected the wave forms will have smooth 
shapes like the ones chosen here. 

TABLE I 
Dipole parameters to generate magnetic field in 

Case 1 

L,  L, L ,  Arlo 
Dipole 1 2.8 -1.7 8.3 0.5 
Dipole 2 -2.9 -1.6 8.3 0.5 
Dipole 3 0 3.3 8.4 -0.5 

0.5 
-0.5 
-0.5 

ization error d as a measure for each the precision of 
dipole estimate, which is defined as follows. 

d = d ( E z  - L,)2 + ( E ,  - L,)2 + ( E ,  - Lp)2 .  (5) 

We use the following criterion to determine whether 
estimated locations of the three dipoles are correct. 
When we obtain a solution, we calculate the localiza- 
tion error di for each dipole. We accept a solution 
when the localization error of all of the three esti- 
mated dipoles is less than 0.05 cm, i.e., di 5 0.05, 
i = 1 , 2 , 3 .  

4.3. Evaluate the Dipole Moment and 
Dipole Time Courses Having estimated the dipole 
location L,  the gain matrix G  can be calculated us- 
ing the forward model. Q can be obtained using 
Q = G*B. Then the moment and time courses of 
each dipole can be easily obtained by finding the best 
rank one approximation for each dipole. This has 
been described in detail in h4osher et al. [ll]. In this 
paper, we give one example to calculate the dipole 
time courses using a correct estimation of L obtained 
in GA. 

4.4. Simulation Procedures Our simulation 
consists of the following steps: 

(1) Compute the magnetic field using the forward 
model and dipole parameters as stated above. 

(2) Estimate source locations using GA, SA and TS 
algorithms respectively by minimizing the cost 
function as we described in Section 2. 

1) Evaluate the performance of each algorithm 
when the parameter configuration is differ- 
ent and get the optimal parametric choice 
for each algorithm. 

2) Compare the performance of different algo- 
rithms when the computational cost of each 
algorithm is same. 

(3) Using the estimated source location, compute 
best-fit dipole time course for each dipole. 

5 Experimental Results 

5.1. Genetic Algorithm There are six parameters 
in GA and we selected the optimal parameter config- 
uration from a large number of simulations. In our 
experiments, the parameters E l i t e R a t e ,  S t e p  E ,  and 
X have been selected according to the configuration 
in TABLE I. While we give different values to Npop  
and G e n e r a t i o n N u m b e r ,  and do 100 experiments for 
each configuration and test the probability it can find 
the correct location and the localization error d. The 
results are listed in TABLE I11 in the last page. 
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TABLE I1 
Configuration of parameters in different stages of 

the hybrid algorithm. LS means local search. 

Case 2 

0.05 

20,000 26% 23% 24% 
50,000 53% 36% 28% 

Our results show that GA is capable to find the 
correct dipole locations in all cases when the pop- 
ulation size and generation number is large enough. 
Our implementation of GA is very efficient and effec- 
tive to localize the dipole, since the population in our 
algorithm is rather small compared with the previ- 
ous implementation of GA to this problem [12]. Our 
results illustrate that the strategy of hybridizing con- 
ventional GA with local search is very suitable to this 
kind of MEG source localization problem. In case 1, 
the performance of GA is so remarkable that it can 
find global optimum with a large probability even the 
computational cost is very small. We think that this 
results from local search feature of our algorithm. In 
Case 2, the estimation of dipole 3 is correct, while the 
estimated location of dipole 1 and dipole 2 always has 
an error of 2 cm. Only when the computational cost 
is rather large, the probability to find the correct lo- 
cation is large. We think this is probably because the 
three dipoles in case 2 are closely related. Drawing 
the cost function in the vicinity of correct location we 
find two local minima in which solutions are trapped. 
The problem is very ill-posed in case 2. The global op- 
timum of cost function is a very small and very deep 
hole in a flat area with some large size local optima 
beside it. Thus the algorithm has greater possibility 
to go into the local optima since the area of the peak 
of local optima is larger than the real optimum. GA 
has remarkable global performance in this problem 
since it can find the global optimum of this function 
if the computation cost is large.' 

5.2. Simulated Annealing The most important 
parameters in SA are TO, a and Lk. A suitable con- 
figuration of the parameters in SA is a key factor for 
its successful implementation. We performed a large 
number of experiments using different parameter sets 
to test the performance of SA. In our simulation, TO is 
set at  0.4 and the start location is randomly specified 
in the parameter space. For each parameter pair, 100 
simulations were conducted and the results are given 
in TABLE IV in the last page. 

We can see from TABLE IV that SA can also find 
the global minimum in most cases if we use a suitable 
annealing schedule and a sufficiently large Markov 
chain. If the length of Markov chain is not long 
enough the possibility to find the global optimum is 
little. Results also show that SA requires great com- 
putational costs. Again, the probability to find the 

100,000 
200,000 

correct solution in Case 2 is less than in Case 1, given 
the same computational cost. 

5.3. Tabu Search The key factor for performance 
of TS is the number of iterations. The more the num- 
ber of iterations, because more points in parameter 
space are examined. TS have search. We performed 
some experiments to test the influence of iteration 
number on the results of TS. The results are listed in 
TABLE V in the last page. 

The performance of TS is rather good for the MEG 
source localization problem. Given the suitable search 
strategy and high number of iterations, the possibility 
to find the correct dipole location is almost 1. Even in 
Case 2, TS has a rather high success rate and the com- 
putation cost is small. If we devise suitable strategies 
aimed at  the specific function, TS exhibits excellent 
performance. The greatest difficulty to apply TS to 
a problem is probably find a proper search strategy 
and efficiently using memory. 

5.4. Comparison of Three Methods GA, SA 
and TS, all have the potential to find the global opti- 
mum if their parameters are correctly configured and 
enough computational cost is spent. GA demands 
that the population and the number of generations is 
large enough. SA requires the decrease of tempera- 
ture is slow enough and the length of Markov chain 
is large enough. TS requires the iteration number 
is large enough. However, in practice, the resource 
of computation is limited. In order to compare the 
performance of them, we must limit the computa- 
tional cost. We restrict the evaluated points to 10000, 
20000,100000, respectively and use each algorithm to 
estimate the dipole location. The algorithm, which 
has greater probability to give the correct estimation, 
is deemed to be superior to others. The results are 
listed in TABLE VI. 

68% 55% 39% 
94% 75% 49% 

TABLE VI 
Possibility to find the correct dipole location using 
genetic algorithm, simulated annealing and tabu 

search when the computational cost is limited. The 
parameters of each algorithm have been optimized 

by a specific procedure. 

10,000 95% 64% 
50,000 100% 98% 97% 

I I 100.000 I 100% I 100% I 100% I 

In Case 1, when the dipoles are spatially and tem- 
porally distinct, the performance of all algorithms is 
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good. GA and TS perform slightly better than SA. 
The hybrid algorithm has excellent local performance 
which will make the solution close up to the global 
optimum rapidly. TS is also suitable to this problem, 
and a suitable search strategy will make the algorithm 
very efficient. In Case 2, the three dipoles are very 
close in space and time. All these algorithms have 
some difficulty to find the correct estimation, and a 
greater number of estimation is needed to find the 
global optimum. GA performs best followed by SA 
proving that GA and SA have remarkable ability to 
find the global optimum. TS, however, is trapped 
by local optima. TS can be improved by adopting 
strategies specific to this problem. Similarly, GA is 
the most effective optimization algorithm. It can be 
considered as an alternative to the prevalent meth- 
ods for solving the MEG source localization problem. 
Simulated annealing has also the potential to give the 
correct estimation even when the problem is very diffi- 
cult. But simulated annealing has larger computation 
of demands than the genetic local search algorithm. 
Hybridizing SA with another heuristic may improve 
the efficiency of SA. Though tabu search needs less 
computation and performs nicely in simple problems, 
it is not as good as GA and SA for this special prob- 
lem. 

6 Conclusions 

In this paper, We have first introduced a hybrid al- 
gorithm by combining genetic algorithm with local 
search techniques in order to overcome disadvantages 
of the conventional genetic algorithms. We have also 
applied tabu search, a widely used optimization meth- 
ods in combinational optimization and discrete math- 
ematics, to MEG source localization. To the best of 
our knowledge, this is the first attempt in the lit- 
erature to apply tabu search to MEGIEEG source 
localization. Finally, we compared the performance 
of our genetic algorithm, tabu search, and stimulated 
annealing, for a special source localization. The com- 
puter simulation results show that our local genetic 
algorithm is the most effective approach to dipole lo- 
cation. We noted that the performance of tabu search 
for MEG source localization is not as good as what 
we expected. That is, it is generally believed that 
tabu search should have a better performance for con- 
tinuous problem compared with stimulated anneal- 
ing [l] .  We have not figured out whether our parame- 
ter choices for tabu search result in this phenomenon. 
The further work along this stream is ongoing. Our 
method in this paper is also suitable for EEG source 
localization. 
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Test 1 
NPOP 5 

GenerNum 10 
Case 1 I Success 65% 

Test 2 Test 3 Test 4 
15 30 50 
25 45 80 
95% 100% 100% 

d l  cm 
dz cm 

0.018 f 0.03 0.008 f 0.02 0.009 f 0.01 0.014 f 0.01 
0.35 f 0.016 0.057 f 0.09 0.035 f 0.07 0.042 f 0.04 

TABLE IV 
Results using simulated annealing on noiseless data in Case 1 and Case 2. 

The parameters of opur algorithm is configured as stated above. Initial 
location is randomly generated in the parameter space. 

Case 2 
d3 cm 1.07 -+ 1.42 0.03 f 0.003 0.047 f 0.032 0.021 f 0.01 
Success 23% 35% 64% 93% 
d~ cm 2.49 f 1.26 1.40f 1.37 1.115 1.34 0.24% 0.37 

I I I I I I -  

1 d3 cm I 0.35 i 0.23 I 0.21 i 0.20 I 0.09 i 0.07 1 0.04 i 0.01 1 

dz cm 
dx cm 

TABLE V 
Results using tabu search on noiseless data in Case 1 and Case 2. The strategies of our implementation of 
the algorithm is as stated in Section 3. Initial location is set as the original point in the parameter space. 

The criteria for success and the measurement are defined in Section 4. 

2.11 f 1.96 0.92f 1.34 0.615 1.17 0.171 0.23 
0.18 f 0.63 0.03f 0.01 0.015 0.005 0.01f 0.01 
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d l  cm 
dz cm 

2.31 f 6.44 1.59 f 1.13 1.87 rfr: 1.23 0.43 f 0.84 
2.25 f 1.57 1.74 f 1.02 1.04 f 1.37 0.36 f 0.63 


