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Abstract

In this paper, we propose a novel efficient method
by incorporating a local genetic algorithm and a new
pre-conditioning technique into Markov random field
model for image restoration. The role of genetic al-
gorithm is to improve the quality of restoration and
the pre-conditioning technique aims at accelerating
the convergence. The remarkable advantage of our
approach is that restoring corrupted tmages and pre-
serving the shape transitions in the restored results
have been orchestrated very well. The experiments on
8D MR image show that our method work very well.

1 Introduction

Image restoration has been widely investigated in the
field of image processing. Efficient restoration has
proven to be very useful for many image processing
applications. Markov random fields is one of the most
powerful approaches to image restoration. In [2], Ge-
man and Geman proposed a Bayesian framework for
image restoration using Markov Random Fields. The
use of MRF enables the integration of some general
priors. Since one pixel value of an image is not inde-
pendent but has spatial dependencies on the values of
its neighbors. This contextual prior knowledge must
be enclosed in our model. MRFs give an appropriate
description of the interactions between neighboring
pixels. Because there are many discontinuities in im-
ages, especially in the areas near edges, we need to
control the interaction between neighboring pixels to
avoid over-smoothed solutions. For image denoising,
the most common problem is that some interesting
structures in the image will be removed from origi-
nal image during noise suppression. Such interesting
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structures in an image often correspond to discontinu-
ities in the image. The major motivation of our work
is to develop an algorithm which can both reduce the
degradations and preserve discontinuities.

In this paper, we consider the 3D MR image or vol-
ume denoising problem in the framework of MRFs.
This problem is an essential preprocessing step for
many applications of medical image analysis. We in-
troduce a novel hybrid search algorithm for this prob-
lem. That is, we incorporate a local genetic algorithm
and a novel pre-conditioning technique into Markov
random field model for image restoration. The ex-
periments on 3D MR image show that our method
work very well. Comparing with the Wiener filter, it
is much more effective and powerful.

The paper is organized as follows. Section 2 de-
votes to Markov Random Field formulation for image
restoration. In Section, we give a brief description of
of our local genetic algorithm. Section 4 is about a
novel pre-conditioning technique. A preliminary ex-
perimental result on 3D MR image is given in Section
5. The final section is a conclusion.

2 MRF Formulation for Image
Restoration

In this section, we present MRF formulation of image
restoration. Let F = {F;;|(i,j) € S} denote a family
of random variables over the lattice S, in which each
random variable F;; takes a value f;; in G. In what
follows, G will denote the set of all the possible gray
levels for a pixel. Let €2 be the state space of the
random field F, which is said to be a Markov Random
Field on S with respect to a neighborhood system N
if and only if Vf€ Q, P(F =f) > 0, and

P(Fi; = £;|Fr = fu, (k,1) € S = {(5,5)})
= P(Fy = £;|Fr = fu, (k,1) € N jy} (1)

298



Form the Hammersley-Clifford theorem, the joint
probability distribution of an MRF can be written as
a Gibbs distribution P(F = f) = % exp(—U(f)), VF €
Q where Z = } r.exp(—U(f)) is a normalization
constant and U(f) is the energy function defined as
U(f) = X cec Velfiy, (1,5) € ), where C = C1 UC U
Cs - . is the set of cliques and V, is the clique potential
associated with the clique c.

For image restoration, a coupled MRF model may
be constructed by defining an MRF, F, for image, and
a boolean MRF, L, for the line processes. The prior
probability can be defined as follows.

PE=fL=1)= —;—exp(-U(f, /T (2
where U(fl) = Y . oV(fl), and Z =
E(f,l) exp(~U(f,1)), The parameter T is assumed
to be 1 for simplicity. The prior energy U(f,1)is a
smoothness constraint on the image and the line
process.

Let d denote the observed image contaminated by
an additional noise N. The observation model can be
described as D = H(F)4- N , where N is zero mean
white Gaussian radom field with variance o for each
variable in N. According to the Bayes rule, we have

P =dF=fL=1)
x PF=fL=1D=dPD=d) (3)

Then MAP estimate of (3) is found by

y* =argmax PF=fL=1D=d)P(D=4d) (4)
deq

which can be obtained by minimizing the following
energy function

U(E1d) = 55lid — HOIP + 3Vl + Y Vel
c c (5)

This is a non-convex function with a hybrid of real
and boolean variables. If we denote the observation
model by d = Ky(f) + n, where d € R"**! is the
data vector, the operator K, is the stiff matrix re-
sulted from the discretion, and n is zero mean white
Gaussian radom field with variance ¢ for each variable
in n , we can rewrite the energy function U(f,ljd) as
follows.

U 1d) =

Ufjl,d) + U(1), (6)

Ul d) = o Ka(f) - d|* + UED, ()

1
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() = Y V(D) and U®) = Ve(),

Extending the line processing to 3D, the line-sites
edge elements pijr, gijk, and 7;;; representing small
planar elements in the i-, j-, and k- directions re-
spectively, so that for examples p;;x = 1 indicates
an active edge between voxels fi;x fit1,5k- Inactive
elements take the value —1. For the four connected
neighborhood system, the conditional clique potential
of the real variables f given the line process, 1, U(f]l),
can be formulated as follows.

vy = 5 Z ~ pi ) (Firrk — Figk)’
v]s
+ (1= Gijr)(fijk fz‘,j+1,k)2
+ A =rigw) ik — fugren)’] (8)

where 1 = [p,q,r]. Then the MAP estimate problem
can be cast as the following optimization problem:

ntl‘iln U(f,1ld) = mlin {U(l) + mti‘n U(ﬂl,d)} (9)

)

Define the function

EQy=UM+ mfin U(fj1,d) (10)
Then the original non-convex optimization problem
is transformed to a hybrid of the combination opti-
mization problem (10) and the continuous optimiza-
tion problem: mingU(fll,d). Once it is understood
that image restoration is such an optimization prob-
lem, the use of any technique for tackling optimization
problem suggests itself. Previous works suggested
that simulated annealing was used for the binary line
process and an analog network to solve the continuous
optimization problem [1]. For 2D image restoration,
Lai et al [5] proposed a modified genetic algorithm
for alternative to simulated annealing. In this paper,
we propose a kind of local genetic algorithm to solve
this problem. This algorithm has excellent global and
local search performance.

3 Local Genetic Algorithm

Genetic algorithms (GA) are capable of searching for
global optimum in functions which cause difficulty for
gradient based methods [3]. Principal advantages of
GA are domain independence, non-linearity and ro-
bustness. However, conventional GA has a very poor
local performance because of the random search of
GA. In this paper, several remarkable features are
added and some important extensions are also made
to improve the performance of the conventional GA.
The implementation details of these features are de-
scribed as follows. ]

(1) Hybrid Algorithm Since GA has poor lo-
cal search performance and conventional local search
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methods have remarkable ability in finding local op-
tima, we propose a hybrid algorithm, which combines
GA with a modified local search procedure. In the
hybrid algorithm, Hooke-Jeeves local search proce-
dure [4], a simple but efficient local search method, is
applied to each new solution generated by the genetic
operations (i.e., selection, crossover, and mutation)
to maximize its fitness value E. The local search is
also applied to elite solutions inherited from the pre-
vious populations. Some parameters are introduced
into the algorithm to control the local search. The
parameter Step is used to control the initial step of
the search. The parameter ¢ is used to control the
distance from the solution to its nearest local opti-
mum.

(2) Elitist Strategy Two sets of solutions are
stored in our algorithm: a current population and
an elite set. After genetic operation and local search,
the current population is replaced with the improved
population and the elite set is updated from the new
population. A local search procedure is applied to
solutions in the elite set. By preserving good solu-
tions, we can avoid losing some excellent solutions. It
has been shown that only after one adopts the elitist
strategy, the GA can mathematically converge to a
global optimum {3]. In our algorithm, the parameter
EliteRate is used to control the number of the elite.

(3) Selection Operation and Crossover Oper-
ation In our algorithm, we adopt the roulette wheel
selection mechanism. The selection probability P(x)
in the current population ® can be expressed as

P(z) = ff%, where f(z) is the fitness value of

solution z and X is the parameter to control the scal-
ing procedure of selection operation. Different values
of A can make GA result in different solutions: when
the value of X is large, the selection mechanism is
strong and competition in the group is intense, some
outstanding solutions in the population have greater
chance to survive. However, the GA is easily trapped
in a local optimum because one or two outstanding
solutions in the group will be dominant in the pop-
ulation rapidly and the evolution will stop at a sub-

optimal solution. Thus in the beginning of GA, we

give X a small value to limit the competition, and
we increase A in subsequent generations in order to
stimulate the evolution.

4 Adaptive Pre-conditioning

As mentioned in Section 2, the image restoration can
be cast as a hybrid of the combination optimization
problem (10) and the following continuous optimiza-
tion problem:

m}n U(fli, d). (11)

For each line process configuration 1 visited by the
LGA, we first need to solve a convex and quadratic
optimization (11). This is equivalent to solve a linear
system with an associated symmetric positive definite
matrix (SPD). From (7) and (8), we can obtain the
associated SPD matrix K for the convex quadratic
function U(f]l,d) as follows.

1
K=-—K;+K, 12
252 4 + (12)

where Ky € RV*N(N = n?) and K, € RVN*V is the
matrix from the quadratic smoothness given in (8).

To solve the above linear system, various precondi-
tioned iterative methods were proposed. In this pa-
per, we propose an adaptive filtering technique for
this question. We first give a brief review of tangen-
tial frequency filtering decompositions(TFFD), which
is basis of our algorithm.

Definition 4.1 The tangential frequency filtering de-
compositions(TFFD) of a block-tridiagonal matriz
K e Rnxn

Di Lis 0 ... 0
Lyy Do :
: . : Dn—l Ln—l,n
0 N 0 Ln,n—l Dn
for a given test vector t = (eT,---,e)T,t € R", is
defined by

M= (L+T)T~YU +1T).

L is the lower block-triangular part of K, U is the
upper block-triangular part of K and T is a block-
diagonal matriz T = blockdiag(Ty, - - -, Ty) with blocks
Ty = Dq and fori>1

Ti=Di+0;,-1T 10;1,—0; i 1L 13— L ;- 104_1;.

The choice of the transfer matrices ©; ; is restricted
to those which fulfill the filter conditions
[©ii—1Ti-10;_1

O i-1Li—1; — L 5-104-1,4]€

= Ly 1T Lioy e, (14)
for the blocks e; of the test vector t.
Ifin (13), L; =L =LT, D;=D=DT, D,Le¢
R™X™  then the correct test vectors
+@ — (e(i)T’ e ,e(i)T) c prm (15)

consists for theses matrices of the eigenvectors e(* of
the generalized eigenvalue problem

2© De® = Le®, lpu)tgé, i=1,2,m.
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Algorithm 4.1 Fori = 1,2,---,q,m € N, an it-
erative scheme to approximate to the solution of the
linear system

Ku=f, KeR"k u, feRF

based on a sequence {MW}!_, of FFDs or TFFDs is
given by

G—

W+ = (T L @7 (p L gy

Theorem 4.1 Let a SPD system matriz K of the
form (13) with Ly = L, D, = D and a suitable
sequence of the test vectors be given. Then the Al-
gorithm 4.1 based on the corresponding sequence of
TFFDs or FFDs M®_ § = 1,2,---,q, convergences
independently of the number of unknowns (|Sullx <

o <1, where Sp =[], 8@, §O =1-MO 7K.

5 Experimental Results

We illustrate the efficacy and power of our approach
using 3D MR image corrupted by Gaussian white
noise with mean of zero and variance of 0.05. Com-
parison of our algorithm with the result from Wiener
adaptive filtering is also made. We choose these this
filtering technique only because it is the most typical
as well as widely used ones.

Figure 1(a) is raw MRI volume. Figure 1(b) is test
image obtained by adding Gaussian white noise with
mean of zero and variance of 0.05 to the raw volume.
Figure 1(c) is the result obtained with 2D wiener fil-
tering which is performed slice by slice. Figure 1(d)
is the result obtained with our approach.

Our experimental result demonstrate that our ap-
proach is much more effective and powerful in noise
reduction.

6 Conclusion

In this paper, We have proposed a novel and effi-
cient method to improve the denoising of 3D MR
image, which is a crucial preprocessing step for the
further analysis. The advantage of our approach is
that restoring corrupted image and preserving the
shape transitions in the restored results have been
orchestrated very well. Experiments illustrate that
our method is much more effective and powerful than
the Wiener technique, a typical and widely used tech-
nique. We are also undergoing research into the com-
parison of our method developed in this paper with
the pixon-based methods for some typical problem in
medical image analysis.

(a) (b)

(d)

Figure 1: (a) Original 3D 165x160x3 MRI im-
age; (b) Image corrupted with Gaussian noise, the
variance is about 0.05; (c) Result of restoration by
2D Wiener filter with 3x neighborhood; (d) Result
obtained through combining MRF and genetic algo-
rithm. :
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