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Segmentation of Large Brain Lesions

S. A. Hojjatoleslami and F. Kruggel*

Abstract—This paper describes a region-growing algorithm for the seg-
mentation of large lesions in -weighted magnetic resonance (MR) images
of the head. The algorithm involves a gray level similarity criterion to ex-
pand the region and a size criterion to prevent from over-growing outside
the lesion. The performance of the algorithm is evaluated and validated on
a series of pathologic three-dimensional MR images of the head.

Index Terms—Brain lesions, magnetic resonance imaging, segmentation.

I. INTRODUCTION

High-resolutionT1-weighted magnetic resonance (MR) images of
the brain are used in clinical practice to reveal focal lesions of the brain
as consequences of head trauma, intracerebral hemorrhages, or cere-
bral infarcts. Properties of the lesion (i.e., position, extent, density)
are known to be related to cognitive handicaps of a patient. While a
semi-quantitativeanalysis of MR tomograms based on visual inspec-
tion (i.e., rating scales) is common today in certain clinical protocols,
tools for aquantitativeanalysis are still rare. One of the reasons for
this deficiency is that building reliable tools to segment MR images
with pathological findings is considered a nontrivial task.

In this paper, we focus on the segmentation of focal brain lesions in
their chronic stage. Such lesions are not necessarily complete, i.e., MR
intensities of the lesion are found in the range between values of un-
damaged tissue and values similar to the cerebrospinal fluid (CSF), in-
dicating a completely damaged area. Properties of a lesion are generally
not homogeneous, often with completely damaged core parts and minor
damage in peripheral portions. In addition, the boundary between a cor-
tical lesion and the CSF compartment is often hard to draw.

Manual segmentation of such lesions is considered as the ”gold stan-
dard.” A human expert with anatomical knowledge, experience, and
patience is required who uses some graphical software tool to outline
the region of interest (ROI). While this method obviously produces the
most reliable results, it is time consuming and tedious. Retests and in-
terrater reliability studies of manually segmented lesion rarely reach
90% correspondence [1], [4], [11]. Previous studies in automatical le-
sion segmentation concentrated on white matter lesions occurring in
multiple sclerosis (MS). Techniques suggested for this problem in-
clude: statistical clustering [10], a combination of statistical techniques
and anatomical knowledge [5], an analysis of follow-up examinations
[9], a combined classification of multichannel MR images [2], [12], or
an iterative approach to correctB1 field inhomogeneities while clas-
sifying voxels [8]. However, the problem studied in this paper is more
general. Typically, MS lesions are covered by white matter, while focal
lesions as consequences of head trauma or cerebral infarction generally
include the cortical gray matter and, thus, reach the CSF compartment.
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So the problem is to discriminate a lesion frommultiple surrounding
compartments.

Section II describes the segmentation procedure proposed here,
which is basically a region-growing algorithm [3] governed by a
new criteria, preventing the process from over-growing into adjacent
low-intensity regions. The behavior of this algorithm is studied
for segmenting lesions in data sets of patients with traumatic brain
injuries. As an informal validation of the procedure, a comparison with
manual segmentations in two cases is included. Finally, we discuss
strengths, weaknesses, and extensions of this approach.

II. REGION GROWING

The region-growing method by pixel aggregation [3] is adopted for
segmentation purposes with some modifications. Like other region-
growing methods, the process starts at a point inside the ROI and grows
in all directions to extend the region. A boundary voxel is joined to the
current region if it has the lowest gray level among the neighbors of
the region. This induces a directional growth such that the pixels of
low gray level are absorbed first. When several pixels with the same
gray level jointly become the candidates for inclusion, a first-come
first-served strategy is applied. If the process starts from a local min-
imum inside the lesion, pixels with monotonically higher and higher
gray levels will sequentially join the region. A property of the region,
called peripheral contrast, is computed for every region during the
growing process. This measure corresponds to the difference of the av-
erage gray level of the ”internal boundary” (the set of outermost con-
nected voxels of the current region) and the ”current boundary” (the
set of voxels adjacent to the current region). The region with the lowest
peripheral contrastis selected as the final output.

Since a lesion may have junctions with other low-intensity com-
partments (e.g., CSF, bone), the region-growing method, as described
above, would eventually grow into some neighboring region outside
the lesion. To prevent this ”spilling over” effect, a criterion based on
the size of this neighboring region is employed. Assume the growing
region already containsk voxels and the intensityyk of the last voxel
is the highest in the region,ymax = yk. A new candidateyk+1 is being
considered for inclusion.

• If yk+1 >= ymax, the candidate is joined and labeled as be-
longing to the growing region. The maximum value is updated:
ymax = yk+1. The growing process then continues by consid-
ering the next candidate (the lowest intensity point in its current
boundary).

• If yk+1 < ymax, the candidate is temporarily joined to the
growing region and labeled as a possible neighboring subregion.
The growing process continues until the intensity of a candidate
yk+i is higher thanymax: yk+i > ymax. The number of voxels
labeled as a possible subregion,i, is then compared with a size
threshold,L.

• If i > L, a ”spilling over” into a low-intensity neighboring region
is assumed. Thus, voxelsfk + 1; . . . ; k + ig belonging to the
subregion are discarded. Then, the growing process continues by
considering a new candidate,yk+1 (the next lowest gray level in
the boundary of the growing region consisting ofk voxels).

• If i < L, all subregion voxels are permanently joined to the
growing region, which now containsk + i voxels. The growing
process continues by considering the next candidate (the lowest
intensity point in its current boundary).
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Fig. 1. (left) Sections from a three-dimensional brain data set of case
1 with a bifrontal lesion. (right) Segmentation and annotation of left and
right-hemispheric lesions overlayed on the original image.

As a consequence, for smallL, the gray level mapping of the sequence
of voxels joined to the region shows a smooth change in relation to the
voxels inside the lesion.

The behavior of the algorithm is now demonstrated with the left pre-
frontal lesion of case 1 (Fig. 1). A starting point is chosen inside the
left lesion at the crosspoint of the two lines. A size threshold ofL =

3000 voxels (3.0 cm3) denotes that the size of the CSF compartment is
larger than 3000 voxels and any subregion inside the lesion is expected
to be smaller than this value. Fig. 2 shows the intensity of voxels joined
during the growing process. To produce a clear figure, only a few cases
of over-growing are illustrated. The gray level of considered voxels
gradually increases from the starting point, but falls at some stages
(e.g., at voxel number 6000, 19 000, and 22 000, etc). Each of these
stages marks a “junction point” which connects the growing region to
a neighboring low-intensity subregion. When the size of any subregion
exceedsL, it is discarded and the growing process resorts at the junc-
tion point and considers to expand the region at the voxel with the next
lowest intensity. Thus, the intensity mapping of joined voxels increases
more smoothly as opposed to the mapping of considered voxels during
the growing process. When the region overgrows into a low-intensity
subregion, theperipheral contrastincreases. Since the size criterion
forces the algorithm to absorb only small subregions with low-inten-
sity voxels, theperipheral contrastand intensity mappings exhibit a
smooth change. The noisy behavior of theperipheral contrastat the
beginning of the growing process is caused by the highly varying in-

Fig. 2. (top) Gray level mappings and (bottom)peripheral contrastduring the
growing process of the left-hemispheric lesion of case 1.

tensity of voxels joined to the current region when the size of the current
region and its current boundary are still small.

In order to determine the best region corresponding to the segmented
lesion, the peripheral contrast graph is scanned in intervals ofL voxels
for local minima. From this list, a local minimum is discarded if it is
higher than a neighboring minimum. The region corresponding to the
first local minimum of the remaining list is accepted as the segmen-
tation result. In the experiment above, the minimum at voxel number
32 000 was chosen to specify the segmented lesion.

A postprocessing step is applied to remove some thin structures
(junctions between the lesion and the CSF compartment). An opening
filter with a spherical structuring element of three-voxel diameter is
used here.

III. EXPERIMENTS AND RESULTS

The performance of this algorithm was studied on 8 large lesions
from five brain data sets of patients suffering from severe head trauma.
MR scans were obtained during their treatment at the Neuropsycholog-
ical Day-Care Clinic at the University of Leipzig (Leipzig, Germany).
A modified driven equilibrium fourier transform (MDEFT) protocol [7]
was used to collect high-resolution,T1-weighted data sets on a 3.0–T
Bruker Medspec 100 system (128 sagittal slices of 256� 256 voxels;
FOV: 250 mm; slice thickness: 1.4 mm; and subsequent trilinear inter-
polation to an isotropical resolution of 1 mm).

The starting point required for the segmentation algorithm was
chosen manually inside every lesion. A size threshold ofL = 3000
voxels (3.0 cm2) was chosen, which is much smaller than the size of
CSF compartment, but larger than any subregion inside the lesion.

The segmentation results on five brain datasets were analyzed qual-
itatively by visual inspection of every slice of the data sets. Examples
are shown in Figs. 1, 3, and 4.The algorithm could successfully seg-
ment the lesion indicated by the starting point. In one example (Fig. 4),
the left- and right-hemispheric lesions were segmented as a single ob-
ject. Here, both cortical layers were completely damaged, which made
an over-growing into the lesion on the contralateral side possible. A
separation would be only possible in this case if anatomical knowledge
were included.

To validate results, two lesions are manually segmented by a neu-
roanatomist using our image processing environment [6]. Fig. 1 (right)
shows the annotation (in white and light gray) in comparison with the
segmentation result (in white and dark gray). Correctly labeled voxels
are shown in white [true positive (TP)], the false positive (FP) voxels
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Fig. 3. Segmentation of bifrontal lesions in case 2. Left- and right-hemispheric
lesions are segmented separately.

Fig. 4. Segmentation of bifrontal lesions in case 3. Based on intensity, lesions
are indistinguishable at basal portions, so only a single lesion is found.

in dark gray and those voxels which are missed by the algorithm are
shown in light gray [false negative (FN)]. A quantitative analysis was
carried out by comparing the volume of every segmented lesion with
that of the annotations. In Table I, TP, FN, and FP rates are compiled
as the fraction of voxels in the white, light, and dark gray parts with
rerspect to the total number of voxels in the annotated lesion. FP rates
are acceptable given the uncertainty caused by the lack of a well-de-
fined boundary in parts of the lesion and the partial volume effect at
boundary voxels. In a lesion of 20 000 voxels (as found in the case ex-
amples), increasing the lesion diameter by just one voxel increases its
volume by 18%.

TABLE I
TP AND FP RATES (%) FOR VOXELS IN THE SEGMENTED LESION WITH

RESPECT TO THEMANUAL SEGMENTATION

IV. DISCUSSION

A method was presented to segment large low-intensity lesions from
T1-weighted MR images of the head. A region-growing technique is
governed by a global discontinuity measure to choose the highest gra-
dient region from the set of evolving regions and by a size criterion to
prevent from over-growing into other low-intensity compartments of
the image.

Since the algorithm locates the lesion boundary based on changes in
the gray level mapping of voxels, rather than their absolute values, it is
resilient to global differences in image brightness, which are typical in
large MR databases. However, results may be affected by local bright-
ness changes due to inhomogeneities of theB1 field of the scanner.
The only parameter of the algorithm, the size thresholdL, is used to
discriminate homogeneous subregions of a lesion from other low-in-
tensity compartments. Its setting is not critical and does not effect the
final result. A manually specified starting point is required to indicate
a lesion. While the algorithm is able to segment small lesions (e.g.,
caused by MS or microangiopathies), lesions in such diseases are typ-
ically numerous, and specifying starting points might be considered
impractical.

Improvements are possible if anatomical knowledge is included:
Starting points might be generated automatically in regions which
differ substantially in their intensity distribution from a model [5]. In
case 3, an over-growing into the contralateral hemisphere was noticed.
Here, both intensity and size criteria fail to produce separate lesions,
although the CSF compartment is almost completely excluded. A
model-based criterion might be joined in order to prevent from growing
into the contralateral hemisphere, i.e., crossing the mid-sagittal plane.

The primary intent of this study was to segment lesions from
focal brain damages caused by cerebral infarctions, hemorrhages,
or contusions, which are typically low-intensity inT1-weighted
images. Signal-intense lesions (e.g., certain brain tumours and fresh
intracerebral blood) might be segmented as well, if the intensity
criterion is reversed. Problems are expected with lesions which feature
mixed low- and high-intensity subregions (e.g., highly malignant
astrocytomas).

The algorithm as presented here is targeted to work on high-reso-
lution T1-weighted images. While multichannel data certainly offer
more information to define tissue characteristics [8], [12] and, thus,
better criteria to segment a lesion from surrounding tissues, generating
high-resolution MR data sets in different weightings is almost pro-
hibitive in terms of acceptable scanning time for a patient.

Results in a series of pathological data sets show a high reliability of
the proposed algorithm. Size errors of detected lesions were in the same
order as the interrater reliability reported in other studies [1], [11]. The
method presented here offers an efficient and reliable alternative to the
tedious manual process of lesion segmentation.
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